[Chem. Pharm. Bull.] 32(7)2522—2529(1984)]

Antivertigo Agents. III.¹⁾ Synthesis of 5,6,7,8-Tetrahydro-1,6-naphthyridine Methyl Homologs

AKIRA SHIOZAWA,*,^a YUH-ICHIRO ICHIKAWA,^a CHIKARA KOMURO,^a SHUJI KURASHIGE,^a HIROSHI MIYAZAKI,^a HIROSHI YAMANAKA,^b and TAKAO SAKAMOTO^b

Research Laboratories of Pharmaceutical Division, Nippon Kayaku Co.,^a Shimo, Kita-ku, Tokyo 115, Japan and Pharmaceutical Institute, Tohoku University,^b Aobayama, Sendai 980, Japan

(Received October 4, 1983)

5-Methyl- (4a), 7-methyl- (4b), and 8-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (4c) were synthesized by chemical modification of pyridine derivatives. On the other hand, the synthesis of the compounds (20b, c) having a methyl group in the aromatic ring of 5,6,7,8-tetrahydro-1,6-naphthyridine was accomplished by the condensation of 1-benzyl-4-piperidinone with the corresponding 3-amino-enones followed by debenzylation. The pathway of the condensation is briefly discussed.

Keywords—5,6,7,8-tetrahydro-1,6-naphthyridine; lithium diisopropylamide; 1-benzyl-4-piperidinone; 3-amino-enone; methylation; pyridine cyclization; catalytic reduction; Friedländer cyclization; debenzylation; antivertigo agent

In the preceding paper of this series,¹⁾ we reported that some 6-substituted 5,6,7,8-tetrahydro-1,6-naphthyridines have marked antivertigo activity. These observations suggest that the 5,6,7,8-tetrahydro-1,6-naphthyridine moiety is important for appearance of the activity. In order to investigate the structure–activity relationships extensively, it is necessary to develop a synthetic route to C-alkyl derivatives of 5,6,7,8-tetrahydro-1,6-naphthyridine in which the 6-position is free. The present paper describes the synthesis of various C-methyl derivatives of 5,6,7,8-tetrahydro-1,6-naphthyridine as representatives of such compounds.

Firstly, 5-methyl- (4a), 7-methyl- (4b), and 8-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (4c) were synthesized as illustrated in Chart 1. When 6-benzyl-1,6-naphthyridinium bromide (1) was treated with methylmagnesium bromide under the usual Grignard reaction conditions, 6-benzyl-5-methyl-5,6-dihydro-1,6-naphthyridine (2) was obtained as a light-brown liquid. Since 2 was relatively unstable during further purification, the liquid was immediately reduced with excess sodium borohydride in a methanol-phosphate buffer (pH 7.0), and 6-benzyl-5-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (3a) was obtained in 91% yield from 1. The proton nuclear magnetic resonance (1 H-NMR) spectrum of 3a clearly demonstrated the presence of a methyl group at 1.33 ppm (3H, d, J=7.0 Hz) and a $^{-}$ CH₂-CH₂- moiety at 2.4—3.3 ppm (4H, m). The debenzylation of 3a by catalytic hydrogenolysis in the presence of palladium-charcoal readily proceeded to give the desired 5-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (4a).

As reported previously, $^{1)}$ 6-alkyl-1,6-naphthyridinium halides were smoothly reduced to their 5,6,7,8-tetrahydro derivatives by treatment with excess sodium borohydride in aqueous methanol. In this manner, 6-benzyl-5,6,7,8-tetrahydro-1,6-naphthyridine (5a) was easily prepared from 1. Deprotonation of 5a with lithium diisopropylamide (LDA) in tetrahydro-furan (THF) at $-70\,^{\circ}$ C and subsequent methylation of the resulting carbanion with methyl iodide afforded a monomethyl derivative of 5a. The 1 H-NMR spectrum of the product (3c) is consistent with the 6-benzyl-8-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine structure. For

example, the signals due to the 5-methylene or benzyl methylene groups were observed at 3.58 (2H, s) or 3.67 ppm (2H, s).

The synthesis of 6-benzyl-7-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (3b) was accomplished by the ring-closure reaction of a 2,3-disubstituted pyridine. Namely, 3-benzylaminomethyl-2-methylpyridine (7) prepared by the diborane reduction of 3-benzylcarbamoyl-2-methylpyridine (6) reacted with acetaldehyde in the presence of LDA to give 3-benzylaminomethyl-2-(2-hydroxypropyl)pyridine (8). The propanol (8) smoothly reacted with thionyl chloride to give the corresponding chloride (9) which cyclized to 3b on treatment with triethylamine.

Like 3a, the N-benzyl derivatives (3b, c) were debenzylated by catalytic hydrogenolysis over palladium—charcoal, and 7-methyl- (4b) and 8-methyl-5,6,7,8-tetrahydro-1,6-naph-thyridine (4c) were obtained in good yields, respectively.

Next, the synthesis of the isomers having a methyl group in the aromatic ring was investigated by pyridine cyclization. In connection with the course of the pyridine cyclization, Thummel et al. reported²⁾ that the condensation of 2-aminomethylenecyclohexanone (10) with cyclohexanone unexpectedly afforded 1,2,3,4,5,6,7,8-octahydroacridine (11) as a sole product, instead of 1,2,3,4,7,8,9,10-octahydrophenanthridine (11'), formation of which might be expected from the structures of the starting materials. Although no explanation was given for this abnormal cyclization in the literature,³⁾ the structural assignment of the product appeared to be unambiguous. Thus, in anticipation of the formation of the linear compound, 10 was reacted with 1-benzyl-4-piperidone (12) in the presence of ammonium acetate as a catalyst, and a single product $C_{19}H_{22}N_2$ (13) was obtained. The ¹H-NMR signals of 13 could be assigned to the linear tricyclic structure. In order to exclude the possibility of the angular structure (13'), the authentic 2-benzyl-1,2,3,4,6,7,8,9-octahydrobenzo[b][1,6]naphthyridine was synthesized from o-aminobenzaldehyde (15) and 12. Namely, the Friedländer reaction of

2524 Vol. 32 (1984)

15 with 12 under basic conditions gave 2-benzyl-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine (16). According to Vierhapper $et\ al.$,⁴⁾ the catalytic hydrogenation of 16 over platinum dioxide in trifluoroacetic acid provided the octahydrobenzo[b][1,6]naphthyridine, which was identical with 13.

As mentioned above, no explanation has been given for the abnormal cyclization, but it is possible that the enamine (17) primary formed from 10 and 12 underwent a self-condensation to give the dihydropyridine (18) which aromatized to give the final product (13). The pathway is tentatively illustrated in Chart 3.

On the basis of the above experiments, 4-amino-3-buten-2-one (19b) and 3-aminometh-acrylaldehyde (19c) were reacted with 12 under similar conditions to give 6-benzyl-2-methyl-(5b) and 6-benzyl-3-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (5c) in 15 and 31% yields, respectively. Though the condensation of 3-aminocrotonaldehyde with 12 has not yet been tried, the reaction of 3-aminoacrylaldehyde (19a) with 12 gave 5a in 40% yield. Accordingly, this type of reaction seems to have synthetic utility for the preparation of 1,6-naphthyridine derivatives.

The hydrogenolysis of 5a—c and 13 under the same conditions as described for 3a—c gave the corresponding debenzylated amines (20a—c and 14) in good yields.

Experimental

All melting points and boiling points are uncorrected. Infrared (IR) spectra were measured with a JASCO IR-G spectrometer. 1 H-NMR spectra were taken at 60 MHz with a JEOL JNM-PMX 60 spectrometer. Chemical shifts are expressed in δ (ppm) values relative to tetramethylsilane as an internal standard. The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, and m—multiplet. Mass spectra (MS) were measured with a Shimadzu GCMS-7000 spectrometer.

6-Benzyl-5-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (3a)—6-Benzyl-1,6-naphthyridinium bromide (5.1 g, 50 mmol) was added portionwise to a 1 m THF solution (150 ml) of MeMgBr (150 mmol) under ice-cooling in an N_2

Chart 3

13

18

$$R_{1} \xrightarrow{CHNH_{2}} 12 \xrightarrow{R_{2}} R_{1} \xrightarrow{N} \xrightarrow{CH_{2}Ph} H_{2}, Pd-C \xrightarrow{R_{2}} NH$$

$$19a-c \qquad 5a-c \qquad 20a-c$$

 $\begin{array}{l} \textbf{19a} : R_1 \! = \! H; \ R_2 \! = \! H \\ \textbf{19b} : R_1 \! = \! Me; \ R_2 \! = \! H \\ \textbf{19c} : R_1 \! = \! H; \ R_2 \! = \! Me \end{array}$

Chart 4

atmosphere. The mixture was vigorously stirred for 10 min, then quenched with 20% NH₄Cl aq. solution. The THF was removed *in vacuo*, and the residue was extracted with ether. The ether was removed *in vacuo* to give 6-benzyl-5-methyl-5,6-dihydro-1,6-naphthyridine (2) as an oil (13.3 g). This crude oil was dissolved in MeOH (250 ml), and 0.5 m phosphate buffer solution (pH 7.0) (250 ml) was added to the solution. Then NaBH₄ (1.9 g, 50 mmol) was added portionwise to the mixture under ice-cooling with stirring, and the mixture was further stirred for about 10 min. After removal of the MeOH *in vacuo*, the resulting oil was extracted with ether. The ethereal layer was evaporated *in vacuo*

to give a residue, which was distilled to afford a colorless oil, bp 141—143 °C (0.3 mmHg). Yield 10.8 g (91%). MS m/z (relative intensity): 238 (M⁺, 3.7), 224 (19.5), 223 (100.0), 91 (14.6).

6-Benzyl-8-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (3c) — A dry THF (50 ml) solution of 6-benzyl-5,6,7,8-tetrahydro-1,6-naphthyridine (5a) (5.6 g, 25 mmol) was added dropwise at -68 °C with stirring to a dry THF (100 ml) solution of LDA [prepared from diisopropylamine (3.8 g, 37.5 mmol) and 1.5 m n-BuLi in hexane (20 ml, 30 mmol)]. The mixture was further stirred for 1 h at -68 °C. Methyl iodide (1.6 ml, 26 mmol) was added dropwise to the mixture below -55 °C and the whole was stirred for 15 min, then quenched by adding a small amount of MeOH, and permitted to warm to room temperature. After removal of the solvent, H_2O was added to the residue, and the mixture was extracted with toluene. The toluene layer was evaporated in vacuo to give a residue, which was distilled to afford a colorless oil, bp 136—140 °C (0.5 mmHg). Yield 5.2 g (87%). MS m/z (relative intensity): 238 (M+, 64.8), 237 (60.3), 161 (151.1), 147 (100.0), 118 (54.2).

3-Benzylaminomethyl-2-methylpyridine (7)——A dry THF (250 ml) solution of 3-benzylcarbamoyl-2-methylpyridine⁵⁾ (6) (22.6 g, 0.10 mol) was gradually added to a 2 m THF solution (250 ml) of borane (0.5 mol) under ice-cooling in an N_2 atmosphere. The mixture was gradually warmed, and refluxed for 2 h. It was then permitted to cool to room temperature, 6 n HCl (100 ml) was added, and the THF was removed by distillation at atmospheric pressure as H_2 was evolved owing to hydrolysis of excess reagent. The resulting solution was made alkaline with 40% NaOH and extracted with toluene. The toluene layer was evaporated *in vacuo* to give a residue, which was distilled to give a colorless oil, bp 139—142 °C (0.6 mmHg). Yield 18.5 g (87%). IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 3270, 1570, 1440. ¹H-NMR (CDCl₃) δ : 1.55 (1H, br s, NH, exchangeable with D_2 O), 2.53 (3H, s, CH₃), 3.73 (2H, s, 3-pyridyl-CH₂ or CH₂C₆H₅), 3.81 (2H, s, CH₂C₆H₅ or 3-pyridyl-CH₂), 7.02 (1H, dd, J_{56} = 4.5 Hz, J_{54} = 7.5 Hz, J_{54} = 7.5 Hz, J_{46} = 2.0 Hz, J_{54} = 1.75 Hz, J_{46} = 2.0 Hz, J_{54} = 1.75 Hz, J_{54} = 2.0 Hz, J_{54} = 1.75 Hz, J_{54} = 2.0 Hz, J_{54} = 3.5 H

3-Benzylaminomethyl-2-(2-hydroxypropyl)pyridine (8)—Diisopropylamine (7.6 g, 75 mmol) was added to dry THF (200 ml) at $-70\,^{\circ}$ C under an N₂ atmosphere, then 1.5 m n-BuLi hexane solution (40 ml, 60 mmol) was gradually added, and the mixture was stirred at $-70\,^{\circ}$ C for 10 min. A dry THF (50 ml) solution of 7 (5.3 g, 25 mmol) was dropped into the above solution below $-60\,^{\circ}$ C. The mixture was further stirred at $-70\,^{\circ}$ C for 1 h, then freshly distilled acetaldehyde (7.0 ml, 125 mmol) was gradually added to the mixture below $-50\,^{\circ}$ C. After being stirred at $-70\,^{\circ}$ C for 30 min, the mixture was quenched with MeOH (20 ml), and the solvent was removed *in vacuo* to give a residue, which was acidified with 6 n HCl and washed with toluene. The aqueous solution was made alkaline with 40% NaOH and extracted with toluene. The toluene layer was evaporated *in vacuo* to give a residue, which was distilled to afford a light yellow oil, bp 165—169 °C (0.3 mmHg). Yield 5.1 g (80%). IR $v_{\rm max}^{\rm neat}$ cm⁻¹: 3270, 1572, 1445.

14-NMR (CDCl₃) δ : 1.36 (3H, d, J=6.5 Hz, CH₃), 2.9—3.1 (2H, m, 2-pyridyl-CH₂), 3.1—4.0 (2H, br s, OH and NH, exchangeable with D₂O), 3.73 (2H, s, 3-pyridyl-CH₂ or CH₂C₆H₅), 3.82 (2H, s, CH₂C₆H₅ or 3-pyridyl-CH₂), 4.0—4.5 (1H, m, CH₂CH(OH)CH₃), 7.05 (1H, dd, J₅₄=7.5 Hz, J₅₆=5.0 Hz, J₅₆=5.0 Hz, J₅₇=7.5 Hz, J₆₈+3.75 Hz, J₆₈-3.75 Hz, J₆₉-3.70 Hz, J₆₀-4.70 Hz, J₆₀-4.70 Hz, J₆₁-4.70 Hz, J₆₁-4.70 Hz, J₆₁-4.70 Hz, J₆₂-4.70 Hz, J₆₃-7.5 Hz, J₆₄-2.0 Hz, J₆₄-2.0 Hz, J₆₅-7.5 Hz, J₆₆-7.5 Hz, J₆₇-7.5 Hz, J₆₈-7.5 Hz, J₆₈-7.5 Hz, J₆₈-7.5 Hz, J₆₈-7.5 Hz, J₆₈-7.5 Hz, J₆₉-7.70 Hz, J₆₉-7.70 Hz, J₆₀-7.70 Hz, J

3-Benzylaminomethyl-2-(2-chloropropyl)pyridine Dihydrochloride (9)—Thionyl chloride (4.2 ml, 58 mmol) was gradually added to a CHCl₃ (20 ml) solution of **8** (5.0 g, 19.5 mmol) under ice-cooling with stirring below 20 °C. The mixture was further stirred at room temperature for 2h and quenched with MeOH under ice-cooling. The mixture was evaporated *in vacuo* to give a residue, which was decolorized with a small amount of activated charcoal in MeOH–EtOH, to afford colorless prisms, mp 199—201 °C. Yield 5.3 g (79%). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 2900, 2550, 1435. ¹H-NMR (D₂O; sodium 2,2-dimethyl-2-silapentane-5-sulfonate as an internal standard) δ : 1.65 (3H, d, J = 6.5 Hz, CH₃), 3.2—3.8 (2H, m, 2-pyridyl-CH₂), 4.1—4.5 (1H, m, CH₂CH(Cl)CH₃), 4.53 (2H, s, 3-pyridyl-CH₂ or CH₂C₆H₅), 4.66 (2H, s, CH₂C₆H₅ or 3-pyridyl-CH₂), 7.66 (5H, s, C₆H₅), 8.10 (1H, dd, J₅₆ = 5.5 Hz, J₅₄ = 8.5 Hz, C₅—H), 8.7—9.0 (2H, m, C₄—H and C₆—H). *Anal.* Calcd for C₁₆H₁₉N₂·2HCl: C, 55.27; H, 6.09; N, 8.06. Found: C, 54.98; H, 6.01; N, 7.99.

6-Benzyl-7-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (3b)—Triethylamine (22.3 ml, 160 mmol) was added to a suspension of **9** (13.9 g, 40 mmol) in EtOH (120 ml), and the mixture was refluxed for 1 h. After removal of the solvent *in vacuo*, the residue was made alkaline with 20% NaOH and extracted with toluene. The toluene layer was evaporated *in vacuo* to give a residue, which was distilled to afford a light yellow viscous oil, bp 150—153 °C (0.9 mmHg). Yield 8.7 g (91%). MS m/z (relative intensity): 238 (M^+ , 7.7), 223 (100.0), 147 (14.0), 91 (54.2).

2-Benzyl-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine (16)—A solution of o-aminobenzaldehyde (15) (16 g, 132 mmol), 12 (27.5 g, 145 mmol), and NaOMe (7.8 g, 145 mmol) in dry EtOH (300 ml) was refluxed for 3 h. The reaction mixture was evaporated *in vacuo* to give a residue, which was taken up with H₂O and toluene. The toluene layer was evaporated *in vacuo* to give a residue, which was recrystallized from iso-Pr₂O-CH₂Cl₂ to afford colorless prisms, mp 125—126 °C (lit.⁶⁾ mp 125.5—126.5 °C). Yield 32.4 g (90%).

2-Benzyl-1,2,3,4,6,7,8,9-octahydrobenzo[b][1,6]naphthyridine (13)—i) A mixture of 16 (2.74 g, 10 mmol) and PtO₂ (274 mg) in CF₃COOH (50 ml) was hydrogenated until the theoretical amount of H₂ had been absorbed. The catalyst was filtered off, and the filtrate was evaporated *in vacuo* to give a residue. The residue was made alkaline with

40% NaOH and extracted with CH_2Cl_2 . The CH_2Cl_2 layer was evaporated *in vacuo* to give a residue, which was recrystallized from iso- Pr_2O to afford colorless prisms, mp 115—116°C. Yield 2.4 g (87%). MS m/z (relative intensity): 278 (M⁺, 70.8), 277 (100.0), 187 (66.7), 158 (27.9), 101 (41.7).

ii) A mixture of 2-aminomethylenecyclohexanone (10) (6.0 g, 48.0 mmol), 12 (10.9 g, 57.6 mmol), and AcONH₄ (60 mg) was heated at 120 °C for 24 h. The mixture was acidified to pH 1.0 with 6 n HCl and washed with CHCl₃, then it was adjusted to pH 2.0 with 40% NaOH and washed with toluene. Next, the pH value was adjusted to 6.0—7.0 with 40% NaOH, and the mixture was extracted with toluene. The toluene layer was evaporated *in vacuo* to give a residue. The residue was distilled to afford a light yellow oil, bp 150—157 °C (0.4 mmHg), which was solidified. The solid was

TABLE I. 6-Benzyl-5,6,7,8-tetrahydro-1,6-naphthyridines (3a—c, 5a—c, and 13)

Compd. No.	IR $v_{\text{max}}^{\text{KBr}}$ (cm ⁻¹)	1 H-NMR δ (CDCl $_{3}$)	Formula	Analysis (%) Calcd (Found)		
				C	Н	N
3a	1573 1450	1.33 (3H, d, J =7.0 Hz, CH ₃), 2.4—3.3 (4H, m, C ₇ and C ₈ –H), 3.4—4.1 (3H, m, C ₅ –H and CH ₂ C ₆ H ₅), 6.90 (1H, dd, J_{32} =4.5 Hz, J_{34} =8.0 Hz, C ₃ –H), 7.0—7.5 (6H, m, C ₄ –H and C ₆ H ₅), 8.30 (1H, dd, J_{23} =4.5 Hz, J_{24} =2.0 Hz, C ₂ –H)	C ₁₆ H ₁₈ N ₂	80.63 (80.97	7.61 7.85	11.76 11.38)
3b	1578 1440	1.20 (3H, d, $J = 6.5$ Hz, CH ₃), 2.4—3.5 (3H, m, C ₇ and C ₈ –H), 3.38 (1H, d, $J = 13.0$ Hz, C ₅ –H), 3.67 (2H, s, CH ₂ C ₆ H ₅), 3.88 (1H, d, $J = 13$ Hz, C ₅ –H), 6.97 (1H, dd, $J_{32} = 4.5$ Hz, $J_{34} = 7.5$ Hz, C ₃ –H), 7.1—7.5 (6H, m, C ₄ –H and C ₆ H ₅) 8.37 (1H, dd, $J_{23} = 4.5$ Hz, $J_{24} = 2.0$ Hz, C ₂ –H)	C ₁₆ H ₁₈ N ₂	80.63 (80.96	7.61 7.84	11.76 11.52)
3c	1565 1440	1.36 (3H, d, J =7.0 Hz, CH ₃), 2.3—3.3 (3H, m, C ₇ and C ₈ –H), 3.58 (2H, s, C ₅ –H or CH ₂ C ₆ H ₅), 3.67 (2H, s, CH ₂ C ₆ H ₅ or C ₅ –H), 7.02 (1H, dd, J_{32} =5.0 Hz, J_{34} =7.5 Hz, C ₃ –H), 7.2—7.6 (6H, m, C ₆ H ₅ and C ₄ –H), 8.40 (1H, dd, J_{23} =5.0 Hz, J_{24} =2.0 Hz, C ₂ –H)	C ₁₆ H ₁₈ N ₂	80.63 (80.88	7.61 7.57	11.76 11.73)
5a	1595 1450	2.7—3.3 (4H, m, C_7 and C_8 –H), 3.60 (2H, s, $C_{12}C_6H_5$ or C_5 –H), 3.68 (2H, s, C_5 –H or $C_{12}C_6H_5$), 7.00 (1H, dd, J_{32} = 5.0 Hz, J_{34} = 8.0 Hz, C_3 –H), 7.2—7.5 (6H, m, C_4 –H and C_6H_5), 8.35 (1H, dd, J_{23} = 5.0 Hz, J_{24} = 2.0 Hz, C_2 –H)	$C_{15}H_{16}N_2$	80.32 (80.05	7.19 7.23	12.49 12.15)
5b	1570 1410	2.50 (3H, s, CH ₃), 2.6—3.2 (4H, m, C ₇ and C ₈ –H), 3.55 (2H, s, C ₅ –H or CH ₂ C ₆ H ₅), 3.69 (2H, s, CH ₂ C ₆ H ₅ or C ₅ –H), 6.85 (1H, d, J =8.0 Hz, C ₃ –H), 7.11 (1H, d, J =8.0 Hz, C ₄ –H), 7.35 (5H, s, C ₆ H ₅)	C ₁₆ H ₁₈ N ₂	80.63 (80.99	7.61 7.48	11.76 11.37)
5c	1565 1450	2.23 (3H, s, CH ₃), 2.6—3.2 (4H, m, C_7 and C_8 —H), 3.55 (2H, s, C_5 —H or C_9 — C_6 H ₅), 3.68 (2H, s, C_9 — C_6 H ₅ or C_5 —H), 7.02 (1H, s, C_9 —H), 7.33 (5H, s, C_6 H ₅), 8.18 (1H, s, C_9 —H)	C ₁₆ H ₁₈ N ₂	80.63 (80.81	7.61 7.73	11.76 11.96)
13	1570 1450	1.5—2.1 (4H, m, C_7 and C_8 –H), 2.5—3.1 (8H, m, C_3 , C_4 , C_6 , and C_9 –H), 3.53 (2H, s, C_1 –H or $C_{\pm 2}C_6H_5$), 3.69 (2H, s, $C_{\pm 2}C_6H_5$ or C_1 –H), 6.92 (2H, s, $C_{\pm 2}C_6H_5$), 7.1—7.5 (5H, m, C_6H_5)	C ₁₉ H ₂₂ N ₂	81.97 (82.30	7.97 8.13	10.06 9.82)

recrystallized from iso-Pr₂O to give colorless prisms, mp 114—115 °C. Yield 5.5 g (41%).

6-Benzyl-5,6,7,8-tetrahydro-1,6-naphthyridine (5a)—A mixture of 3-aminoacrylaldehyde (19a) (2.1 g, 30 mmol), 12 (3.8 g, 20 mmol), Et₃N (1.5 ml), and piperidinium acetate (30 mg) was heated at 120 °C for 24 h. The reaction mixture was dissolved in 3 N HCl and washed with CHCl₃. The aqueous layer was made alkaline with saturated Na₂CO₃ aq. solution and extracted with CHCl₃. The CHCl₃ was evaporated off *in vacuo* to give a residue, which was distilled under reduced pressure to give a light yellow oil, bp 108—112 °C (0.5 mmHg). Trituration of the oil with Et₂O-petr. ether gave a solid which was recrystallized from Et₂O-petr. ether to afford colorless prisms, mp 80—81 °C. Yield 1.7 g (37%). MS m/z (relative intensity): 224 (M⁺, 23.8), 223 (22.7), 147 (15.1), 133 (46.4), 91 (100.0).

6-Benzyl-2-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (5b)—A mixture of 4-amino-3-buten-2-one (19b) (133.8 g, 1.57 mol), 12 (298 g, 1.57 mol), and AcONH₄ (4 g) was heated at $120\,^{\circ}$ C for 20 h. The reaction mixture was acidified to pH 1.0 with 6 n HCl and washed with CHCl₃. The pH value of the aqueous solution was adjusted to 4.0 with 40% NaOH, and the mixture was washed with toluene. Next, the pH was adjusted to 6.5 with 40% NaOH, and the mixture was extracted with toluene. The toluene layer was evaporated *in vacuo* to give a residue. The residue was distilled to afford a light yellow oil, which was gradually solidified. The solid was recrystallized from iso-Pr₂O to give colorless needles, mp 79—80 °C. Yield 99.9 g (27%). MS m/z (relative intensity): 238 (M⁺, 74.4), 237 (100.0), 161

TABLE II. 5,6,7,8-Tetrahydro-1,6-naphthyridines (4a-c, 14, and 20a-c)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Compd. No.	mp (°C) or bp (mmHg)	Yield (%)	IR v_{max}^{neat} (cm ⁻¹)	1 H-NMR δ (CDCl ₃)	Analysi Calcd	s (%) (Found)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4a	81—86	95		1.45 (3H, d, J=7.0 Hz, CH ₃), 1.78 (1H, s, NH,	$C_9H_{12}N_2$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.5)			= · · ·	C 72.94	(72.63)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1450	• • • • • • • • • • • • • • • • • • • •		(8.28)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						N 18.90	(18.75)
4b 89—90 92 3250 1.26 (3H, d, $J=6.0\mathrm{Hz}$, CH ₃), 2.88 (1H, s, NH, $C_9H_{12}N_2$ (0.5) 1573 exchangeable with D ₂ O), 2.2—3.4 (3H, m, C_7 and C 72.94 (72.86 1440 C_8 —H), 4.03 (2H, s, C_5 —H), 7.00 (1H, dd, J_{32} — H 8.16 (8.21 4.5 Hz, J_{34} =7.5 Hz, C_3 —H), 7.28 (1H, dd, J_{42} = N 18.90 (18.76 1.5 Hz, J_{34} =7.5 Hz, C_3 —H), 8.34 (1H, dd, J_{23} = 4.5 Hz, J_{24} =1.5 Hz, C_2 —H) 4c 76—80 92 3250 1.72 (3H, d, $J=6.5\mathrm{Hz}$, CH ₃), 1.93 (1H, s, NH, $C_9H_{12}N_2$ (0.8) 1570 exchangeable with D ₂ O), 2.6—3.6 (3H, m, C_7 and C 72.94 (73.22 1.5 Hz, J_{34} =7.5 Hz, C_3 —H), 4.00 (2H, s, C_5 —H), 7.23 (1H, dd, J_{42} = N 18.90 (18.69 1.5 Hz, J_{34} =7.5 Hz, C_3 —H), 7.23 (1H, dd, J_{42} = N 18.90 (18.69 1.5 Hz, J_{34} =7.5 Hz, C_3 —H), 8.44 (1H, dd, J_{23} = 4.5 Hz, J_{24} =1.5 Hz, C_2 —H) 14° 99—100 96 3150 1.5—2.3 (4H, m, C_7 and C_8 —H), 2.05 (1H, s, NH, C_1 2H ₁₆ N ₂ exchangeable with D ₂ O), 2.5—3.5 (8H, m, C_3 , C_4 , C 76.55 (76.27 1410 C_6 , and C_9 —H), 3.97 (2H, s, C_1 —H), 7.00 (2H, H 8.57 (8.73 1.5 Hz, C_1 —H) 20a 103—110 94 3250 1.92 (1H, s, NH, exchangeable with D ₂ O), 2.8— $C_8H_{10}N_2$ (5.0) 1572 3.4 (4H, m, C_7 and C_8 —H), 4.01 (2H, s, C_5 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{32} =4.5 Hz, J_{34} =7.5 Hz, C_3 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{32} =4.5 Hz, J_{34} =7.5 Hz, C_3 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.62 (2.94 (2.94 1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_7 —H), C_7 1.61 (71.77 1.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, J_{43} =7							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4b		92				
4.5 Hz, $J_{34} = 7.5$ Hz, $C_3 = H$), 7.28 (1H, dd, $J_{42} =$ N 18.90 (18.76) 1.5 Hz, $J_{43} = 7.5$ Hz, $C_4 = H$), 8.34 (1H, dd, $J_{23} =$ 4.5 Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 4.5 Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 4.5 Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 4.6 (0.8) 1570 exchangeable with D ₂ O), 2.6—3.6 (3H, m, C ₇ and C 72.94 (73.22) 1440 $C_8 = H$), 4.00 (2H, s, $C_3 = H$), 6.98 (1H, dd, $J_{32} =$ H 8.16 (8.10) 1.5 Hz, $J_{34} = 7.5$ Hz, $C_3 = H$), 7.23 (1H, dd, $J_{42} =$ N 18.90 (18.65) 1.5 Hz, $J_{34} = 7.5$ Hz, $C_4 = H$), 8.44 (1H, dd, $J_{23} =$ 4.5 Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 1.6 exchangeable with D ₂ O), 2.5—3.5 (8H, m, C ₃ , C ₄ , C 76.55 (76.22) 1.5 Hz, $J_{34} = 7.5$ Hz, $J_{34} =$		(0.5)					(72.86)
1.5 Hz, $J_{43} = 7.5$ Hz, $C_4 = H$), 8.34 (1H, dd, $J_{23} = 4.5$ Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 4c 76—80 92 3250 1.72 (3H, d, $J = 6.5$ Hz, CH ₃), 1.93 (1H, s, NH, $C_9H_{12}N_2$ (0.8) 1570 exchangeable with D_2O), 2.6—3.6 (3H, m, C_7 and C 72.94 (73.22 1440 $C_8 = H$), 4.00 (2H, s, $C_5 = H$), 6.98 (1H, dd, $J_{32} = H$ 8.16 (8.16 4.5 Hz, $J_{34} = 7.5$ Hz, $C_3 = H$), 7.23 (1H, dd, $J_{42} = N$ 18.90 (18.65 1.5 Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 14°0 99—100 96 3150 1.5—2.3 (4H, m, C_7 and $C_8 = H$), 2.05 (1H, s, NH, $C_{12}H_{16}N_2 = 4.5$ Hz, $J_{24} = 1.5$ Hz, $C_2 = H$) 140 C_6 , and $C_9 = H$), 3.97 (2H, s, $C_1 = H$), 7.00 (2H, $C_1 = H$), 8.57 (8.73 s, $C_1 = H$) 20a 103—110 94 3250 1.92 (1H, s, NH, exchangeable with D_2O), 2.8— $C_8H_{10}N_2 = C_8H_{10}N_2 = $				1440	• • • • • • • • • • • • • • • • • • • •		(8.21)
4.5 Hz, $J_{24} = 1.5$ Hz, $C_2 - H$) 4c 76—80 92 3250 1.72 (3H, d, $J = 6.5$ Hz, CH_3), 1.93 (1H, s, NH, $C_9H_{12}N_2$ (0.8) 1570 exchangeable with D_2O), 2.6—3.6 (3H, m, C_7 and C 72.94 (73.22) 1440 $C_8 - H$), 4.00 (2H, s, $C_5 - H$), 6.98 (1H, dd, $J_{32} = H$ 8.16 (8.16) 4.5 Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), 7.23 (1H, dd, $J_{42} = N$ 18.90 (18.65) 1.5 Hz, $J_{43} = 7.5$ Hz, $C_4 - H$), 8.44 (1H, dd, $J_{23} = A.5$ Hz, $J_{24} = 1.5$ Hz, $C_2 - H$) 1560 exchangeable with D_2O), 2.5—3.5 (8H, m, C_3 , C_4 , $C_4 = 0.5$) (76.21) 1410 C_6 , and $C_9 - H$), 3.97 (2H, s, $C_1 - H$), 7.00 (2H, $C_8 - H$), 14.88 (14.94) 1570 (5.0) 1572 3.4 (4H, m, C_7 and $C_8 - H$), 4.01 (2H, s, $C_5 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{32} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{32} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{23} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{23} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{23} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{23} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{23} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 - H$), $C_7 - 1.61$ (71.77) 1445 7.01 (1H, dd, $J_{23} = 4.5$ Hz, $J_{24} = 1.95$ Hz, $C_2 - H$) 1570 2.53 (3H, s, $C_1 = 1.5$ Hz, $C_1 = 1.5$ Hz, $C_2 = 1.5$ Hz, $C_2 = 1.5$ Hz, $C_3 = 1.5$ Hz,						N 18.90	(18.76)
4c 76—80 92 3250 1.72 (3H, d, $J=6.5$ Hz, CH_3), 1.93 (1H, s, NH , $C_9H_{12}N_2$ (0.8) 1570 exchangeable with D_2O), 2.6—3.6 (3H, m, C_7 and C 72.94 (73.22 1440 C_8 —H), 4.00 (2H, s, C_5 —H), 6.98 (1H, dd, J_{32} H 8.16 (8.16 4.5 Hz, J_{34} = 7.5 Hz, C_3 —H), 7.23 (1H, dd, J_{42} N 18.90 (18.69 1.5 Hz, J_{43} = 7.5 Hz, C_4 —H), 8.44 (1H, dd, J_{23} = 4.5 Hz, J_{24} = 1.5 Hz, C_2 —H) 14°0 99—100 96 3150 1.5—2.3 (4H, m, C_7 and C_8 —H), 2.05 (1H, s, NH , $C_{12}H_{16}N_2$ exchangeable with D_2O), 2.5—3.5 (8H, m, C_3 , C_4 , C 76.55 (76.27 1410 C_6 , and C_9 —H), 3.97 (2H, s, C_9 —H), 7.00 (2H, C_9 H 8.57 (8.77 s, C_9) (5.0) 1572 3.4 (4H, m, C_7 and C_8 —H), 4.01 (2H, s, C_9 —H), C_9 1445 7.01 (1H, dd, C_9 4.5 Hz, C_9 4.5 Hz, C_9 4.7 Hz, C_9 7.161 (71.77 s) (1H, dd, C_9 4.7 Hz, C_9 8.36 (1H, dd, C_9 4.5 Hz, C_9 8.36 (1H, dd, C_9 4.5 Hz, C_9 8.36 (1H, dd, C_9 4.7 Hz, C_9 8.37 (2H, s, C_9 8.36 (1H, dd, C_9 8.39 (2H, s, C_9 8.39 (2H, s, C_9 8.30 (1H, d, C_9 8.39 (2H, s, C_9 8.30 (1H, d, C_9 8.39 (2H, s, C_9 8.31 (1H, d, C_9 8.39 (2H, s, C_9 8.31 (1H, d, C_9 8.39 (2H, s, C_9 8.30 (
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	m .c . 00	0.0	2250			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4c		92		•	, 12 -	(72.00)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(8.0)					, ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1440			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						N 18.90	(18.69)
14 ^{a)} 99—100 96 3150 1.5—2.3 (4H, m, C_7 and C_8 —H), 2.05 (1H, s, NH, $C_{12}H_{16}N_2$ 1560 exchangeable with D_2O), 2.5—3.5 (8H, m, C_3 , C_4 , C 76.55 (76.25 1410 C_6 , and C_9 —H), 3.97 (2H, s, C_1 —H), 7.00 (2H, C_8 H 8.57 (8.73 s, C_{10} —H) N 14.88 (14.94 14.94 103—110 94 3250 1.92 (1H, s, NH, exchangeable with C_2O), 2.8— $C_8H_{10}N_2$ (5.0) 1572 3.4 (4H, m, C_7 and C_8 —H), 4.01 (2H, s, C_5 —H), C_8 71.61 (71.77 1445 7.01 (1H, dd, J_{32} =4.5 Hz, J_{34} =7.5 Hz, C_3 —H), C_8 10.20.88 (20.92 14.94) 1.95 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, J_{43} =7.5 Hz, J_{44} =1.95							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 40)	00 100	06	2150		CHN	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14"	99100	90				(76.27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					- · · · · · · · · · · · · · · · · · · ·		
20a 103—110 94 3250 1.92 (1H, s, NH, exchangeable with D_2O), 2.8— $C_8H_{10}N_2$ (5.0) 1572 3.4 (4H, m, C_7 and C_8 –H), 4.01 (2H, s, C_5 –H), C 71.61 (71.72 1.445 7.01 (1H, dd, J_{32} =4.5 Hz, J_{34} =7.5 Hz, C_3 –H), H 7.51 (7.46 7.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_4 –H), N 20.88 (20.92 80—84 87 3240 1.95 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ (0.5) 1570 2.53 (3H, s, C_3 -H), 6.92 (1H, d, J = H 8.16 (7.92 8.0 Hz, C_3 -H), 7.23 (1H, d, J =8.0 Hz, C_4 -H) N 18.90 (18.61				1410	The state of the s		
(5.0) 1572 3.4 (4H, m, C_7 and C_8 –H), 4.01 (2H, s, C_5 –H), C 71.61 (71.72 1445 7.01 (1H, dd, J_{32} =4.5 Hz, J_{34} =7.5 Hz, C_3 –H), H 7.51 (7.46 7.32 (1H, dd, J_{42} =1.95 Hz, J_{43} =7.5 Hz, C_4 –H), N 20.88 (20.92 80.64 87 3240 1.95 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ (0.5) 1570 2.53 (3H, s, C_8), 2.7—3.4 (4H, m, C_7 and C 72.94 (73.33 1460 C_8 –H), 3.98 (2H, s, C_5 –H), 6.92 (1H, d, J = H 8.16 (7.92 8.0 Hz, C_3 –H), 7.23 (1H, d, J =8.0 Hz, C_4 –H) N 18.90 (18.64 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (7.25 1460 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 7.10 (1H, s, H 8.16 (8.36 14.65 C_8 –H), 7.10 (1H, s)	200	103 110	04	3250			(14.94)
1445 7.01 (1H, dd, $J_{32} = 4.5$ Hz, $J_{34} = 7.5$ Hz, $C_3 = H$), H 7.51 (7.44 7.32 (1H, dd, $J_{42} = 1.95$ Hz, $J_{43} = 7.5$ Hz, $C_4 = H$), N 20.88 (20.92 80—84 87 3240 1.95 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ (0.5) 1570 2.53 (3H, s, $C_3 = H$), 3.98 (2H, s, $C_3 = H$), 6.92 (1H, d, $J = H$ 8.16 (7.92 8.0 Hz, $C_3 = H$), 7.23 (1H, d, $J = H$ 8.16 (7.92 8.0 Hz, $C_3 = H$), 7.23 (1H, d, $J = H$ 8.16 (7.92 1560 2.29 (3H, s, $C_3 = H$), 2.6—3.4 (4H, m, $C_7 = H$) N 18.90 (18.64 1560 $C_8 = H$), 3.96 (2H, s, $C_5 = H$), 7.10 (1H, s, $C_7 = H$) (72.54 1460 $C_8 = H$), 3.96 (2H, s, $C_5 = H$), 7.10 (1H, s, $C_7 = H$) H 8.16 (8.34 160 $C_8 = H$), 3.96 (2H, s, $C_5 = H$), 7.10 (1H, s, $C_7 = H$) H 8.16 (8.34 160 $C_8 = H$), 3.96 (2H, s, $C_5 = H$), 7.10 (1H, s, $C_7 = H$) H 8.16 (8.34 160 $C_8 = H$), 3.96 (2H, s, $C_5 = H$), 7.10 (1H, s, $C_7 = H$) H 8.16 (8.34 160 $C_8 = H$), 3.96 (2H, s, $C_5 = H$), 7.10 (1H, s, $C_7 = H$)	20a		94		•		(71.72)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(3.0)					
8.36 (1H, dd, $J_{23} = 4.5$ Hz, $J_{24} = 1.95$ Hz, C_2 -H) 20b 80—84 87 3240 1.95 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ (0.5) 1570 2.53 (3H, s, C_3), 2.7—3.4 (4H, m, C_7 and C_7 2.94 (73.3) 1460 C_8 -H), 3.98 (2H, s, C_5 -H), 6.92 (1H, d, J = H 8.16 (7.92) 8.0 Hz, C_3 -H), 7.23 (1H, d, J =8.0 Hz, C_4 -H) N 18.90 (18.6) 20c ^{b)} 48—49 71 3250 1.84 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ 1560 2.29 (3H, s, C_3), 2.6—3.4 (4H, m, C_7 and C_7).94 (72.53) 1460 C_8 -H), 3.96 (2H, s, C_5 -H), 7.10 (1H, s, H 8.16 (8.34)				1443			
20b 80—84 87 3240 1.95 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ (0.5) 1570 2.53 (3H, s, $C_9H_{12}N_2$), $C_9H_{12}N_2$ (73.3 1460 C_8 -H), 3.98 (2H, s, C_9 -H), 6.92 (1H, d, J = H 8.16 (7.92 8.0 Hz, C_9 -H), 7.23 (1H, d, J =8.0 Hz, C_9 -H) N 18.90 (18.64 C_9 -H) 3250 1.84 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ 1560 2.29 (3H, s, $C_9H_{12}N_2$ 1560 2.29 (3H, s, $C_9H_{12}N_2$ 17.00 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s, C_9 -H), 7.10 (1H, s, H 8.16 (8.34 1460 C_8 -H), 3.96 (2H, s), C_9 -H), 7.10 (1H, s)					,	11 20.00	(=0.7.2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20h	8084	87	3240	· · · · · · · · · · · · · · · · · · ·	C ₀ H ₄₀ N ₀	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200		07		· · · · · · · · · · · · · · · · · · ·		(73.31)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.5)			· · · · · · · · · · · · · · · · · · ·		(7.92)
20c ^{b)} 48—49 71 3250 1.84 (1H, s, NH, exchangeable with D_2O), $C_9H_{12}N_2$ 1560 2.29 (3H, s, CH ₃), 2.6—3.4 (4H, m, C_7 and C 72.94 (72.58 1460 C_8 –H), 3.96 (2H, s, C_5 –H), 7.10 (1H, s, H 8.16 (8.34))				1.00			(18.61)
1560 2.29 (3H, s, CH ₃), 2.6—3.4 (4H, m, C ₇ and C 72.94 (72.55) 1460 C_8 -H), 3.96 (2H, s, C_5 -H), 7.10 (1H, s, H 8.16 (8.36)	$20c^{b)}$	4849	71	3250	- · · · · · · · · · · · · · · · · · · ·		(/
1460 C_8 -H), 3.96 (2H, s, C_5 -H), 7.10 (1H, s, H 8.16 (8.34)		,					(72.58)
							(8.34)
$C_4 - \Pi$, 0.20 (1 Π , 8, $C_2 - \Pi$) 10.30 (13.2)				- 1-1	C_4 –H), 8.20 (1H, s, C_2 –H)	N 18.90	(19.27)

a) This compound was recrystallized from iso-Pr₂O and the IR spectrum was measured in a KBr disk.

b) This compound was recrystallized from Et₂O-petr. ether and the IR spectrum was measured in a KBr disk.

(23.2), 147 (88.0), 119 (18.0), 91 (36.0).

6-Benzyl-3-methyl-5,6,7,8-tetrahydro-1,6-naphthyridine (5c)—A mixture of 3-aminomethacrylaldehyde (19c) (41.1 g, 480 mmol), 12 (109.9 g, 580 mol), and AcONH₄ (0.6 g) was heated at 120 °C for 24 h. The mixture was acidified with 6 n HCl and washed with CHCl₃. The aqueous layer was adjusted to pH 4.0 with 40% NaOH and extracted with toluene. The toluene layer was evaporated *in vacuo* to give a residue, which was fractionally distilled: 1st fraction, bp 109 °C (0.45 mmHg), 23.2 g; 2nd fraction, bp 125 °C (0.45 mmHg), 20.3 g; and 3rd fraction, bp 140—150 °C (0.45 mmHg), 28.9 g. A solution of the 3rd fraction (28.9 g, 120 mmol) in CH₃COCH₃ (100 ml) was gradually added to a hot solution of fumaric acid (20.9 g, 180 mmol) in CH₃COCH₃ (2 1) with stirring. The mixture was further stirred at room temperature. The resulting solid was filtered off and recrystallized from CH₃COCH₃. The fumarate was decomposed with saturated Na₂CO₃ aq. solution, and the mixture was extracted with CHCl₃. The CHCl₃ layer was evaporated *in vacuo* to give an oil, which gradually solidified. The solid was recrystallized from petr. ether to give colorless prisms, mp 80—81 °C. Yield 26.6 g (23%). MS m/z (relative intensity): 238 (M⁺, 91.1), 237 (77.8), 161 (22.2), 147 (100.0).

Debenzylation of 6-Benzyl-5,6,7,8-tetrahydronaphthyridines (3a—c, 5a—c, and 13)—A mixture of a 6-benzyl-5,6,7,8-tetrahydro-1,6-naphthyridine (40 mmol) and 10% Pd—C (2 g) in AcOH (100 ml) was hydrogenated at 50—60 °C. After absorption of the theoretical amount of H_2 , the catalyst was filtered off. The filtrate was concentrated in vacuo to give a residue, which was made alkaline with 40% NaOH and extracted with toluene. The toluene was removed in vacuo to give a residue, which was purified by distillation or recrystallization.

Acknowledgement The authors wish to thank Dr. W. Tanaka, Nippon Kayaku Co., for encouragement during this work.

References and Notes

- 1) Part II: A. Shiozawa, Y.-I. Ichikawa, M. Ishikawa, Y. Kogo, S. Kurashige, H. Miyazaki, H. Yamanaka, and T. Sakamoto, *Chem. Pharm. Bull.*, **32**, 995 (1984).
- 2) R. P. Thummel and D. K. Kohli, J. Org. Chem., 42, 2742 (1977).
- 3) G. Bouchon, K.-H. Spohn, and E. Breitmaier, Chem. Ber., 106, 1736 (1973).
- 4) F. W. Vierhapper and E. L. Eliei, J. Org. Chem., 40, 2729 (1975).
- 5) Y. Sato, T. Iwashige, and T. Miyadera, Chem. Pharm. Bull., 8, 427 (1960).
- 6) G. Kempter and S. Hirschberg, Z. Chem., 4, 29 (1964) [Chem. Abstr., 60, 8005a (1964)].