Chem. Pharm. Bull. 32(7)2809—2814(1984)

(1R, 5R, 8S, 9S)-Deoxyloganic Acid from Nepeta cataria

FUJIO MURAI,*,a MOTOKO TAGAWA, SØREN DAMTOFT, SØREN ROSENDAL JENSEN, and BENT JUHL NIELSEN

Laboratory of Chemistry, Aichi Medical University,^a Nagakute, Aichi 480–11, Japan and Department of Organic Chemistry, Technical University of Denmark,^b DK-2800, Lyngby, Denmark

(Received February 7, 1984)

On the basis of exhaustive 1 H- and 13 C-nuclear magnetic resonance (NMR) spectral studies and chemical transformations, the structure of an iridoid glucoside formerly designated as 5-epideoxyloganic acid, isolated from *Nepeta cataria* L., has been revised to (1R, 5R, 8S, 9S)-deoxyloganic acid, which is renamed 1,5,9-epideoxyloganic acid. The absolute configuration of this glucoside was established by its chemical conversion to an antipode of boschnialactone.

Keywords—*Nepeta cataria*; Lamiaceae; iridoid glucoside; structural revision; 1,5,9-epideoxyloganic acid; antipode; boschnialactone; 8-epideoxyloganic acid

Nepeta cataria L. (Lamiaceae) (Chikumahakka in Japanese) has been used in Chinese medicine as an antifebrile, a diuretic and also as a remedy for stomach-ache and dropsy. The plant, which is similar to Actinidia polygama MIQ. (Actinidiaceae) (Matatabi in Japanese) and Boschniakia rossica HULT. (Orobanchaceae) (Oniku in Japanese), also attracts felids and causes them to show unusual behavior. In the previous paper, we described the isolation of an iridoid glucoside, named 5-epideoxyloganic acid, from this plant. In addition, the tentative structure of the glucoside (1a) was suggested on the basis of its degradation with 10% sulfuric acid followed by oxidation with potassium permanganate to give 8S-trans, trans-boschnialinic acid (2). However, further study of the structure of the glucoside obliged us to reinvestigate the stereochemistry of the aglucone moiety. This paper describes further work leading to the revision of the absolute stereostructure to formula 1.

The iridoid glucoside (1), $C_{16}H_{24}O_9$, mp 106 °C (dec.), $[\alpha]_D$ +85.1 ° (MeOH), was obtained as colorless needles. On an exhaustive comparison of the ¹³C-nuclear magnetic resonance (NMR) spectra¹⁾ of the acetate (3), 8-epideoxyloganic acid tetraacetate (4) and deoxyloganic acid tetraacetate (5), we noticed that the spectrum of 3 has a striking resemblance to that of 4. Recently, we also obtained 8-epideoxyloganic acid (6),²⁾ $C_{16}H_{24}O_9 \cdot 1/2C_2H_5OH$, mp 219—220 °C, $[\alpha]_D - 110.0$ ° (MeOH), from the mechanolic extract of the whole plant of *Boschniakia rossica* HULT. along with the known glucoside boschnaloside³⁾ and boschnaside (8-epiiridodial glucoside),^{2,3)} The absolute structure of 6 was determined on the basis of the following chemical evidence: conventional acetylation of 6 gave the acetate, $C_{24}H_{32}O_{13}$, mp 186—187 °C, $[\alpha]_D - 97.8$ ° (CHCl₃), which was identical with 4 obtained on oxidation of boschnaloside tetraacetate (7) with potassium bichromate in acetic acid.^{2,4)}

In the ¹H-NMR spectra (CD₃OD) of 1 and 6, the only major difference is in the chemical shifts of H-1 (δ 5.27 in 1, δ 5.46 in 6) and H-1′ (δ 4.58 in 1, δ 4.69 in 6); the remaining chemical shifts and coupling constants are almost identical. Furthermore, the ¹³C-NMR spectral data of 1⁵) and 6 are virtually identical, except for the signals attributed to C-1 (δ 101.49 in 1, δ 97.06 in 6) and C-1′ (δ 103.49 in 1, δ 99.55 in 6) (Table I).²)

Table I. ¹³C-NMR Data for 1,5,9-Epideoxyloganic Acid (1) and 8-Epideoxyloganic Acid (6) (in D₂O)

Carbon	1	6
1	101.49 d	97.06 d
3	153.57 d	153.35 d
4	113.36 s	113.75 s
5	33.58 d	33.12 d
6	32.09 t	31.97 t
7	33.38 t	33.51 t
8	36.82 d	36.55 d
9	43.89 d	43.79 d
10	17.08 q	16.79 q
11	172.09 s	172.14 s
1'	103.49 d	99.55 d
$\hat{2}'$	74.42 d	73.91 d
3′	76.96 d	76.91 d
4′	70.57 d	70.74 d
5′	77.54 d	77.42 d
6′	61.95 t	61.94 t

Chemical shifts in ppm relative to external (CH₃)₄Si (in a capillary).

On treatment with diazomethane both 1 and 6 gave the corresponding methyl esters (8), $C_{17}H_{26}O_9 \cdot C_2H_5OH$, mp 94—95 °C (dec.), $[\alpha]_D$ +96.4 ° (MeOH), and (9), $C_{17}H_{26}O_9$, mp 147—148 °C, $[\alpha]_D$ -108.6 ° (MeOH). The ¹H-NMR spectra (CD₃OD) of these compounds showed signals due to the carbomethoxyl group at δ 3.68. The ¹³C-NMR spectra (D₂O) of the methyl esters (8) and (9) are also quite similar to each other except for the chemical shifts at C-1 and C-1', as seen in the case of 1 and 6 (Table I). These features can be accounted for by assuming that the aglucones of 1 and 6 are enantiomeric. Analogous data have been reported in the spectra of β -D-glucopyranosides of d- and d-menthol. Furthermore, the coupling constants $J_{1,9}$ (J=4.0 Hz) of 1 and 6 are identical, suggesting that the two compounds have the same relative configuration. Thus, we prepared compounds 10a and 11a⁷⁾ by enzymatic

OH
$$R_1$$
 R_2 R_2 R_3 R_4 R_5 R_5 R_5 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_9 R

hydrolysis of the methyl esters 8 and 9 with β -glucosidase.

The aglucone (10a),⁸⁾ C₁₁H₁₆O₄, mp 84—86 °C, [α]_D +5.9 ° (MeOH), was obtained as colorless needles. It showed characteristic infrared (IR) bands at 3450 (hydroxy group), 1690, 1680, $1630 \, \text{cm}^{-1}$ (α,β -unsaturated ester). In addition, the ¹H-NMR (CDCl₃) spectrum of 10a has a doublet at δ 1.10 (J=7.0 Hz) due to a secondary methyl group, a singlet at δ 3.60 due to a carbomethoxy group and a singlet at δ 7.30 due to an olefinic proton. On addition of D₂O, the doublet at δ 4.34 (J=4.0 Hz) due to the hydroxyl group disappeared, and the signals at δ 4.98 (brt) (H α) and 5.42 (brt) (H β) due to the C-1 proton changed to two doublets (J=8.0 and 4.0 Hz, respectively). The ¹H-NMR spectrum also indicates the presence of 10a and 10b (relative ratio: 10a-10b 5:2), which must be produced on epimerization at C-1. The mutarotation of 10a was observed as follows: the value of the initial specific rotation (+123.2°) at 405 nm in chloroform changed to +25.3° after 22 h (10a=10b).

The aglucone (11a), $C_{11}H_{16}O_4$, mp 85—86 °C, $[\alpha]_D$ —4.1 ° (MeOH), was obtained as colorless needles. The melting point and IR, ¹H- and ¹³C-NMR spectra of 11a are identical with those of 10a. However, the circular dichroism (CD) curves of 10a and 11a in methanol are opposite to each other. On the other hand, the aglucone (11a) of the glucoside (9) was identical with an authentic sample of 10-deoxy-7,8-dehydrogenipin which had been obtained by catalytic hydrogenation of genipin (12) over PtO₂, together with several other hydrogenation products.^{4,7,8)} Therefore, the absolute configuration of 8-epideoxyloganic acid (6) from *Boschniakia rossica* HULT. was further confirmed to be 8*R-cis. cis.*²⁾

As the aglucones (10a) and (11a) have been proved to be enantiomeric, the absolute stereostructure of the glucoside (1) was established as (1R, 5R, 8S, 9S)-deoxyloganic acid. In order to confirm the absolute configuration of 1 in relation to that of boschnialactone (13), we carried out the following chemical reaction. Enzymatic hydrolysis of 1 with β -glucosidase gave an aglucone (14), which was further treated with 2 N potassium hydroxide, resulting in decarboxylation followed by Cannizzaro reaction to provide an acid (15). After addition of 10% sulfuric acid to 15, the solution was heated at 80% for 30 min to give the corresponding lactone (16), $[\alpha]_D + 25.1\%$ (CHCl₃), whose IR, H- and T-NMR spectra and retention time (t_R) of gas chromatography (GLC) were identical with those of 13, $[\alpha]_D - 18.2\%$ (CHCl₃). Therefore, the lactone (16) was determined to be an antipode of 13.1%

In the course of our previous study¹⁾ the glucoside (1) was proved to be readily degraded

Fig. 4

to give only 8*S-trans*, trans-boschnialinic acid (2). Thus, treatment of 1 with 10% sulfuric acid gave the dialdehyde which was further subjected to oxidation with potassium permanganate to afford 2. However, we have found that some epimerization can take place at C-9 quite easily even on much milder acid treatment than that used above.⁴⁾ In this light, the formation of 2 from 1 is not wholly unexpected.

In conclusion, the *Nepeta* glucoside should have the absolute stereostructure depicted in 1, corresponding to 1,5,9-epideoxyloganic acid. This is the first naturally occurring iridoid glucoside with stereochemistry deviating from the usual (1S, 5S, 9R) pattern.

Experimental

Melting points were determined on a Thomas Hoover apparatus and are uncorrected. IR and ultraviolet (UV) spectra were recorded on a JASCO IR-G spectrophotometer and a Hitachi EPS-3T grating spectrophotometer, respectively. Optical rotations were determined on a JASCO DIP-180 digital polarimeter. CD spectra were recorded on a JASCO J-20 spectropolarimeter. 1 H- and 13 C-NMR spectra were recorded on JNM-MH-100 and JNM-FX-100 spectrometers, respectively. Tetramethylsilane (TMS) was used as an internal standard in CD₃OD and CDCl₃, but as an external one (in a capillary) with D₂O. GLC analyses were performed on a NEVA model 1700 gas chromatograph (column, $5' \times 1/4''$, 20% Apiezon L on Chromosorb W 100—120 mesh) using the following conditions: flow rate, 17 ml/min (He); column temperature, 180%C; injection block temperature, 200%C. Column chromatography was carried out on Silica gel BW-80 (Fuji Davison). For thin layer chromatography (TLC), Silica gel 60%F₂₅₄ (Merck) was used and spots were detected by spraying the plates with anisaldehyde-H₂SO₄ reagent.

1,5,9-Epideoxyloganic Acid (1)—mp 106 °C (dec.). [α]_D²⁸ +85.1 ° (c = 1.1, MeOH), IR, UV and ¹H-NMR. ^{1) 13}C-NMR (Table I).

1,5,9-Epideoxyloganic Acid Tetraacetate (3)—mp 169—170 °C. [α]_D²⁷ +49.4 ° (c=1.1, MeOH). IR, UV, ¹H-and ¹³C-NMR.¹⁾

8-Epideoxyloganic Acid (6)²⁾—The glucoside (6) was isolated from *Boschniakia rossica* HULT. as colorless plates, mp 219—220 °C. [α]_D²² – 110.0 ° (c=1.4, MeOH). IR ν_{max} (Nujol): 3500—2500, 1680, 1640 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.08 (3H, d, J=6.6 Hz, CH₃), 4.69 (1H, d, J=7.6 Hz, 1'-H), 5.46 (1H, d, J=4.0 Hz, 1-H), 7.43 (1H, d, $^4J_{3,1}$ =0.7 Hz, H-3). *Anal.* Calcd for C₁₆H₂₄O₉·1/2C₂H₅OH: C, 53.25; H, 7.10. Found: C, 53.23; H, 7.42. ¹³C-NMR (Table I).

Methylation of 1,5,9-Epideoxyloganic Acid (1) — The glucoside (1) (200 mg) was methylated with ethereal CH₂N₂ to afford a crystalline solid, which was recrystallized from EtOH to yield the methyl ester (8) (125 mg) as colorless needles, mp 94—95 °C (dec.). [α]_D²⁰ + 96.4 ° (c=1, MeOH). IR v_{max} (Nujol): 3400, 3250, 1690, 1635 cm⁻¹. ¹H-NMR (D₂O) δ: 1.06 (3H, d, J=7.3 Hz, CH₃), 3.68 (s, COOCH₃), 4.59 (1H, d, J=7.1 Hz, 1'-H), 5.31 (1H, d, J=4.0 Hz, 1-H), 7.40 (1H, d, ${}^4J_{3,1}$ =0.7 Hz, 3-H). ¹³C-NMR (D₂O) δ: 101.42 (d, C(1)), 153.11 (d, C(3)), 113.58 (s, C(4)), 33.53 (d, C(5)), 32.12 (t, C(6)), 33.41 (t, C(7)), 36.80 (d, C(8)), 43.89 (d, C(9)), 17.03 (q, C(10)), 170.92 (s, C(11)), 52.93 (q, COOCH₃), 103.52 (d, C(1')), 74.45 (d, C(2')), 76.98 (d, C(3')), 70.59 (d, C(4')), 77.56 (d, C(5')), 61.95 (t, C(6')). *Anal.* Calcd for C₁₇H₂₆O₉·C₂H₅OH: C, 54.27; H, 7.67. Found: C, 53.77; H, 7.40.

Methylation of 8-Epideoxyloganic Acid (6) — The glucoside (6) (250 mg) was methylated with ethereal CH₂N₂ to afford a crystalline solid, which was recrystallized from EtOH to yield the methyl ester (9) (137 mg) as colorless needles, mp 147—148 °C (dec.). $[\alpha]_D^{22} - 108.6$ ° (c = 1.1, MeOH). IR v_{max} (Nujol): 3400, 1715, 1635 cm⁻¹: ¹H-NMR (CD₃OD) δ: 1.08 (3H, d, J = 6.4 Hz, CH₃), 3.68 (3H, s, COOCH₃), 4.70 (1H, d, J = 7.3 Hz, 1′-H), 5.45 (1H, d, J = 4.0 Hz, 1-H), 7.42 (1H, s, H). ¹³C-NMR (D₂O): δ: 97.04 (d, C(1)), 152.94 (d, C(3)), 113.95 (s, C(4)), 33.34 (d, C(5)), 32.12 (t, C(6)), 33.58 (t, C(7)), 36.70 (d, C(8)), 43.89 (d, C(9)), 16.89 (q, C(10)), 170.82 (s, C(11), 52.88 (q, COOCH₃), 99.64 (d, C(1′)), 74.01 (d, C(2′)), 77.03 (d, C(3′)), 70.84 (d, C(4′)), 77.52 (d, C(5′)), 62.09 (t, C(6′)). *Anal.* Calcd for C₁₇H₂₆O₉: C, 54.54; H, 7.00. Found: C, 54.58; H, 7.02.

Enzymatic Hydrolysis of 1,5,9-Epideoxyloganin (8)——A 1% aqueous β -glucosidase (from almonds, Sigma)

solution (10 ml) was added to a solution of the glucoside (8) (2.96 g) in aqueous $0.1 \,\mathrm{N}$ CH₃COOH- $0.07 \,\mathrm{N}$ CH₃COONa (12 ml, pH 4.6) and the mixture was allowed to stand at 36 °C for 24 h. It was then extracted with Et₂O, dried over Na₂SO₄, and concentrated to afford a crystalline solid, which was recrystallized from Et₂O-n-pentane to yield an aglucone (10a) (500 mg) as colorless needles, mp 84—86 °C. [α]_D²¹ +5.9°; [α]₅₇₇ +7.3°; [α]₅₄₆ +9.7°; [α]₄₃₅ +33.2°; [α]₄₀₅ +48.4° (c=1.1, MeOH). In chloroform solution (c=1.5) the initial rotation was considerably larger [α]₄₀₅ +123.2°, declining to +25.3° after 22 h. CD (c=0.02, MeOH) $\Delta \varepsilon$ ²⁶: +4.4 (229) (positive maximum). IR ν _{max} (Nujol): 3450, 1690, 1680, 1630 cm⁻¹. ¹H-NMR (the compound was dissolved in CDCl₃ and allowed to stand for 24 h, and then the spectrum was measured) δ : 1.10 (3H, d, J=7.0 Hz, CH₃), 2.80 (1H, m, 5-H), 3.60 (3H, s, COOCH₃), 4.34 (1H, d, J=4.0 Hz, 1-OH), 4.98 (5/7H, br t, 1-H), 5.42 (2/7H, br t, 1-H in 10b), 7.30 (1H, s, 3-H). The signal of 1-OH (δ 4.34) disappeared on addition of D₂O and two H-1 signals of the α and β forms appeared clearly at δ 4.98 (d, J=8.0 Hz) and at δ 5.42 (d, J=4.0 Hz), respectively. From the relative peak areas, the ratio 10a: 10b was suggested to be ca. 5:2. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 61.95; H, 7.77.

Enzymatic Hydrolysis of 8-Epideoxyloganin (9)—The glucoside (9) (911 mg) was subjected to enzymatic hydrolysis with β-glucosidase in a manner similar to that described above, affording the crude product (380 mg), which was purified by silica gel (5 g) column chromatography with C_6H_6 -AcOEt mixture of increasing AcOEt content as the eluent. The eluate with C_6H_6 -AcOEt (97:3) was concentrated to afford a crystalline solid, which was recrystallized from Et₂O-n-pentane to give an aglucone (11a) (91 mg) as colorless needles, mp 85—86 °C. [α]₂₀¹²² -4.1°; [α]₅₇₇ -5.6°; [α]₅₄₆ -6.2°; [α]₄₃₅ -23.8°; [α]₄₀₅ -38.1° (c=1.6, MeOH). In chloroform solution (c=1.1) the initial rotation of 11a was also considerably larger, [α]₄₀₅²² -119.8°, declining to -21.1° after 24 h. CD (c=0.1, MeOH) $\Delta \varepsilon^{26}$: -3.7 (229) (negative maximum). IR ν_{max} (Nujol): 3450, 1690, 1680, 1630 cm⁻¹. ¹H-NMR (the compound was dissolved in CDCl₃ and allowed to stand for 24 h, and then the spectrum was measured) δ: 1.14 (3H, d, J=7.0 Hz, CH₃), 2.84 (1H, m, 5-H), 3.70 (3H, s, COOCH₃), 4.24 (1H, brt, 1-OH), 5.03 (5/7H, t, J=8.0 Hz, 1-H), 5.47 (2/7H, t, J=4.0 Hz, 1-H in 11b), 7.38 (1H, s, 3-H). Further, the signal of 1-OH (δ4.24) disappeared on addition of D₂O and two 1-H signals of the β and α forms appeared clearly at δ5.03 (d, J=8.0 Hz) and at δ5.47 (d, J=4.0 Hz), respectively. The ratio 11a:11b was suggested to be ca. 5:2 from the relative peak areas. Anal. Calcd for C₁₁H₁₆O₄: 62.25; H, 7.60. Found: C, 62.21; H, 7.87.

Enzymatic Hydrolysis of 1,5,9-Epideoxyloganoic Acid (1) with β -Glucosidase and Cannizzaro Reaction of the **Aglucone (14)**—An aqueous solution (18 ml) of the glucoside (1) (1.10 g) was treated with β -glucosidase (177 mg), and the mixture was allowed to stand at 37 °C for 24 h. The reaction solution was extracted with Et₂O, then the extract was dried over Na₂SO₄, and concentrated to give the crude product (14) (416 mg), which was mixed with 2 N KOH (16 ml) and EtOH (3 ml). The reaction mixture was refluxed under N_2 for 3 h, then Et₂O were added and whole was shaken. The H₂O layer was acidified with 10% H₂SO₄ and extracted with Et₂O. The extract was dried over Na₂SO₄, and concentrated to give the crude product. Next, 10% H₂SO₄ (3 ml) and EtOH (5 ml) were added to this product, and the mixture was refluxed for 30 min then extracted with Et₂O. The ethereal layer was washed with sat. NaHCO₃ soln. to remove the acid fraction. The ethereal layer was dried over Na₂SO₄, and concentrated to afford the residue (76 mg), which was subjected to silica gel (2 g) column chromatography using only CHCl₃ as the eluent. The eluate fractions which showed a spot at Rf 0.6 on TLC with CHCl₃-MeOH (50:1) were collected and concentrated. The residue was further purified by silica gel (5 g) column chromatography in a manner similar to that described above to give a lactone (16) (12 mg) as an oily substance, $[\alpha]_D^{21} + 25.1^{\circ} (c = 0.7, \text{CHCl}_3)$, which was identified as an antipode of boschnialactone by direct comparison of the IR, 1 H- and 13 C-NMR spectra and t_{R} (GLC), 17.6 min, with those of an authentic sample of boschnial actone (13), $^{9)}$ [α] $_{D}^{26}$ – 18.2 $^{\circ}$ (c = 1.2, CHCl $_{3}$) (an antipode of 16). IR ν_{max} (neat): 1743 cm⁻¹. 1 H-NMR (CDCl₃) δ : 1.01 (3H, d, J=6.0 Hz, CH₃), 4.10, 4.18 (2H, d, J=4.0, 2.0 Hz, 1-H), 13 C-NMR (CDCl₃) δ : 67.51 (t, C(1)), 173.75 (s, C(3)), 32.87 (t, C(4)), 37.38 (d, C(5)), 34.98 (t, C(6)), 35.16 (t, C(7)), 32.87 (d, C(8)), 39.79 (d, C(9)), 14.68 (q, C(10)).

Acknowledgments We thank Novo Industries for access to NMR facilities, and the Danish National Research Council for financial assistance. We are also grateful to Dr. Niwa and the staff of the Analytical Center, Faculty of Pharmaceutical Science, Meijo University, for measurements of ¹³C-NMR and CD spectra and for elemental analyses, respectively.

References and Notes

- 1) a) M. Tagawa and F. Murai, Planta Medica, 39, 144 (1980); b) Idem, ibid., 47, 109 (1983).
- 2) F. Murai and M. Tagawa, Abstracts of Papers, the 27th Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics, Nagasaki, 1983, p. 18.
- 3) F. Murai and M. Tagawa, Planta Medica, 46, 1 (1982).
- 4) F. Murai and M. Tagawa, Chem. Pharm. Bull., 28, 1730 (1980).
- 5) In the previous paper, $^{1a)}$ the signal at δ 23.5 in the 13 C-NMR (D₂O) spectrum of the glucoside (1) was incorrectly assigned to the C-7 carbon atom. In fact, the signal observed at δ 33.4 should be that due to the C-7 carbon atom.

- 6) S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am. Chem. Soc., 100, 3331 (1978).
- 7) C. Djerassi, T. Nakano, A. N. James, L. H. Zalkow, E. J. Eisenbraun, and J. N. Shoolery, J. Org. Chem., 26, 1192 (1961).
- 8) The configuration of the OH group at C-1 of 10-deoxy-7,8-dihydrogenipin was not clearly determined in the paper of Djerassi *et al.*⁷⁾ However, the crystalline aglucone of 9, mp 85—86 °C, showed mutarotation after being dissolved in a solvent (CDCl₃), and hence the crystalline form might be only 11a. By analogy it was thought that the crystalline aglucone of 8 might be 10a.
- 9) T. Sakan, F. Murai, Y. Hayashi, Y. Honda, T. Shono, M. Nakajima, and M. Kato, *Tetrahedron*, 23, 4635 (1967).
- 10) We attempted to produce the C_9 -epimer of 15 by treatment under alkaline conditions, but so far we have not been able to obtain the compound or the C_9 -epimer of 16.