Chem. Pharm. Bull. 32(7)2836—2840(1984)_

Ring Transformation of a Diterpenoid Grayanol Derivative into 1-epi-Leucothol

JINSAKU SAKAKIBARA,*,a TOYO KAIYA,a and YOICHI IITAKAb

Faculty of Pharmaceutical Sciences, Nagoya City University, ^a 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467, Japan and Faculty of Pharmaceutical Sciences, University of Tokyo, ^b 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

(Received November 4, 1983)

Acidic treatment of a grayanol derivative (3), easily formed from grayanotoxin-II (1), afforded a novel cyclization product (7), whose structure was elucidated as 3(S),20:5(R),10(R)-diepoxy-14(R),16(R)-dihydroxy-1-epi-leucothane by direct X-ray crystallographic analysis.

Keywords—grayanotoxin; grayanol; leucothol; grayanotoxin-II; *Leucothoe grayana*; 3(S),20:5(R),10(R)-diepoxy-14(R),16(R)-dihydroxy-1-epi-leucothane; X-ray analysis; acid-catalyzed reaction

Various diterpenoids have been isolated from Leucothoe grayana MAX. (Ericaceae), and classified into three structural groups: grayanotoxins (1), leucothols (2), and grayanolds (3). We have been studying the interconversion of these skeletons by using metallic salts, and succeeded in the transformation of grayanotoxin-II(G-II) (1) into leucothol D (2)¹⁾ and grayanol B (3). During the study, we obtained an epoxy compound (4), a grayanol derivative, from 1 by the reaction with thallium (III) nitrate. The structure of 4 was finally established by X-ray diffraction analysis of its reduction product (5). However, in the course of the structure determination, compound 5 was treated with p-toluenesulfonic acid in acetone in order to synthesize an acetonide, and two products 6 and 7 were obtained in 48 and 32% yields, respectively.

Compound 6, viscous syrup, had a molecular formula of $C_{23}H_{36}O_5$ as determined from the mass spectrum (MS). Its proton nuclear magnetic resonance (1H -NMR) spectrum showed

the presence of five tertiary methyls (δ 1.01, 1.07, 1.27, 1.37 and 1.40), a one-proton singlet at δ 4.52 characteristic of the C-14 proton, and a one-proton multiplet at δ 5.64 assignable to the C-1 proton. Thus the structure of **6** was concluded to be the desired acetonide of **5**.

Compound 7, $C_{20}H_{30}O_4 \cdot H_2O$ mp 204—206 °C, was also obtained by treatment of 5 ($C_{20}H_{32}O_5$) with *p*-toluenesulfonic acid in methanol instead of acetone in 86% yield. Therefore 7 must be an acid-catalyzed reaction product of 5. The ¹³C-NMR spectrum of 7

Chart 2

TABLE I. Atomic Parameters for the Crystal of 7

									
Atom	X	у	Z	B11	B22	B33	B12	B13	B23
C(1)	7716 (4)	8727 (2)	6115 (6)	61 (3)	13 (1)	117 (7)	3 (1)	-5 (4)	0 (2)
C(2)	8507 (4)	8502 (2)	4447 (6)	74 (3)	20 (1)	141 (9)	5 (1)	16 (5)	-2(2)
C(3)	9396 (4)	8125 (2)	5522 (8)	68 (3)	16 (1)	223 (12)	4(1)	31 (6)	-10(2)
C(4)	10040 (4)	8443 (2)	7224 (8)	49 (3)	15 (1)	210 (11)	5 (1)	15 (5)	1 (2)
C(5)	9144 (4)	8751 (2)	8585 (6)	51 (3)	14 (1)	156 (9)	2(1)	0 (5)	-4(2)
C(6)	8300 (3)	9141 (1)	7515 (7)	52 (3)	11 (1)	186 (9)	-1(1)	5 (5)	1 (2)
C(7)	7399 (3)	9365 (2)	9072 (7)	44 (3)	13 (1)	214 (10)	-1(1)	3 (5)	-12(2)
C(8)	6203 (3)	9048 (2)	9243 (6)	42 (3)	13 (1)	151 (8)	0 (1)	-10(4)	-8(2)
C(9)	6294 (3)	8400 (1)	8768 (6)	45 (2)	12 (1)	155 (8)	1 (1)	0 (4)	-3(2) $-4(2)$
C(10)	7445 (3)	8272 (1)	7733 (6)	53 (3)	11 (1)	135 (8)	-1 (1)	-8(4)	-3(2)
C(11)	5267 (4)	8182 (2)	7513 (8)	53 (3)	14 (1)	210 (10)	-2(1)	-8 (4) $-14 (5)$	-3(2) $-13(2)$
C(12)	4085 (4)	8396 (2)	8287 (8)	50 (3)	16 (1)	230 (11)	-2(1)	-6 (6)	-8(2)
C(13)	4137 (3)	9032 (2)	8824 (6)	45 (3)	14 (1)	155 (8)	4(1)	-8 (5)	
C(14)	5234 (3)	9296 (1)	7894 (6)	49 (3)	12 (1)	147 (9)	4(1)	-7(5)	-2(2)
C(15)	5667 (4)	9135 (2)	11396 (7)	53 (3)	17 (1)	138 (8)	3 (1)	-7(5)	-2(2)
C(16).	4325 (4)	9151 (2)	11138 (7)	58 (3)	13 (1)	150 (9)	2 (1)	-2 (5)	-11(2)
C(17)	10734 (4)	8031 (2)	8559 (10)	66 (4)	22 (1)	357 (18)	13 (2)	7 (8)	0 (2)
C(18)	10910 (5)	8862 (2)	6246 (9)	66 (3)	20 (1)	284 (14)	1 (1)	37 (7)	28 (4)
C(19)	3653 (4)	8786 (2)	12599 (8)	76 (4)	20 (1)	183 (10)	-6(2)	10 (6)	6 (3)
C(20)	7625 (4)	7695 (2)	6867 (10)	71 (4)	13 (1)	329 (15)	3 (1)	22 (7)	9 (3) -10 (3)
O(1)	8820 (3)	7630 (1)	6228 (6)	74 (3)	12 (0)	353 (11)	5 (1)	42 (5)	
O(2)	8320 (2)	8335 (1)	9312 (4)	48 (2)	16 (0)	144 (6)	1 (1)	-7(3)	-5(2)
O(3)	5202 (3)	9892 (1)	8147 (5)	71 (2)	11 (0)	180 (7)	2 (1)	0 (4)	9 (1)
O(4)	3907 (3)	9717 (1)	11515 (5)	69 (2)	15 (0)	190 (7)	7 (1)		2 (1)
O(W)	3541 (3)	10182 (2)	5419 (6)	84 (3)	27 (1)	214 (9)	15 (1)	10 (4) -22 (5)	-4 (2) 1 (2)

Fractional coordinates of atoms, x, y and z are multiplied by 10^4 .

The temperature factors are of the form:

 $T = \exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\right], \text{ where } \beta_{ij}\text{'s are multiplied by } 10^4.$

disclosed the presence of the following groups: three methyls, five methylenes, four methines, two quaternary carbons, a methylene adjacent to oxygen, three methines adjacent to oxygen, and two tertiary carbinyl carbons. These data indicate that dehydration of 5 and saturation of its double bond had occurred, followed by C-C and C-O bond formations. However, as no carbon framework of 7 could be deduced from the above spectral evidence, a direct X-ray crystallographic analysis was carried out in order to determine the structure of 7. A drawing of the stereostructure is shown in Chart 2. Thus, 7 was established as 3(S),20;5(R),10(R)-diepoxy-14(R),16(R)-dihydroxy-1-epi-leucothane, that is, a novel hexacyclic compound possessing two ether rings. A possible reaction mechanism is as follows: initially the C-6 hydroxyl group is removed by acid, followed by C-C bond formation between C-1 and C-6, when the C-1 proton is α -oriented because of the presence of the 3β ,20-epoxy ring. Then an ether linkage is formed by attack of the C-5 hydroxyl gorup on C-10.

Thus, the linkage between C-1 and C-5 of G-II (1) was cleaved by thallium (III) nitrate, giving a compound with a ten-membered ring (4). Then ring closure occurred again between C-1 and C-6 in the presence of an acid to afford 7, with a different ring structure from the starting material.

Experimental

Melting points were measured with a micro melting point apparatus (Yanaco) and are uncorrected. Infrared (IR)

TABLE II. Bond Lengths in Å

Atom 1		Atom 2	Length	(Std)	
C(1)	_	C(2)	1.523	(6)	
C(1)	_	C(6)	1.512	(6)	
C(1)	_	C(10)	1.555	(5)	
C(2)		C(3)	1.538	(7)	
C(3)	_	C(4)	1.544	(7)	
C(3)	-	O(1)	1.436	(6)	
C(4)	-	C(5)	1.553	(6)	
C(4)	_	C(17)	1.545	(7)	
C(4)	_	C(18)	1.557	(7)	
C(5)	_	C(6)	1.520	(6)	
C(5)	_	O(2)	1.457	(5)	
C(6)	_	C(7)	1.552	(6)	
C(7)	_	C(8)	1.576	(5)	
C(8)		C(9)	1.590	(5)	
C(8)	_	C(14)	1.543	(5)	
C(8)	_	C(15)	1.558	(6)	
C(9)		C(10)	1.519	(6)	
C(9)	_	C(11)	1.532	(6)	
C(10)		C(20)	1.513	. (6)	
C(10)	_	O(2)	1.453	(5)	
C(11)	· <u>-</u>	C(12)	1.538	(6)	
C(12)	· _	C(13)	1.570	(6)	
C(13)	_	C(14)	1.536	(5)	
C(13)	_	C(16)	1.563	(6)	
C(14)	-	O(3)	1.443	(4)	
C(15)	_	C(16)	1.552	(6)	
C(16)	_	C(19)	1.512	(6)	
C(16)	-	O(4)	1.463	(5)	
C(20)		O(1)	1.444	(6)	

Std: standard deviation.

TABLE III. Valency Angles in Degrees

		TABLE III.	v are	ncy Angles in Deg	1008	
Atom 1		Atom 2		Atom 3	Angle	(Std)
C(2)		C(1)	_	C(6)	114.0	(3)
C(2)	_	C(1)		C(10)	111.3	(3)
C(6)		C(1)		C(10)	97.7	(3)
C(3)	_	C(2)	_	C(1)	105.9	(4)
C(4)	_	C(3)		C(2)	111.1	(4)
C(4)	_	C(3)	_	O(1)	113.3	(4)
C(2)	_	C(3)	_	O(1)	109.2	(4)
C(5)		C(4)	_	C(3)	109.6	(4)
C(5)		C(4)	_	C(17)	108.7	(4)
C(5)	_	C(4)		C(18)	110.8	(4)
C(3)		C(4)	_	C(17)	110.0	(4)
C(3)	_	C(4)	_	C(18)	109.1	(4)
C(17)	_	C(4)	_	C(18)	108.5	(4)
C(6)	_	C(5)	_	C(4)	116.8	(3)
C(6)		C(5)		O(2)	99.2	(3)
C(4)	_	C(5)		O(2)	107.0	(3)
C(7)	. —	C(6)	_	C(1)	109.5	(3)
C(7)		C(6)	mes	C(5)	109.5	(3)
C(1)	_	C(6)	_	C(5)	99.2	(3)
C(8)	_	C(7)	_	C(6)	117.4	(3)
C(9)	_	C(8)		C(7)	113.7	(3)
C(9)	_	C(8)	_	C(14)	108.2	
C(9)	_	C(8)		C(15)	109.6	(3)
C(7)	_	C(8)	_	C(14)	113.7	(3)
C(7)	_	C(8)	_	C(14) C(15)	110.2	(3)
C(14)	_	C(8)	_	C(15)	100.7	(3)
C(10)		C(9)	_	C(8)	110.1	(3)
C(10)	_	C(9)	_	C(11)	111.1	(3)
C(8)		C(9)	_	C(11)	111.1	(3)
C(20)	_	C(10)		C(1)	111.0	(3)
C(20)	_	C(10)		C(9)	111.0	(3)
C(20)	_	C(10)		O(2)	105.6	(4)
C(1)		C(10)		C(9)	109.8	(3)
C(1)	_	C(10)	_	O(2)	106.2	(3)
C(9)		C(10)	_	O(2)	105.1	(3)
C(12)	_	C(11)	_	C(9)	112.8	(3)
C(13)	_	C(12)	_	C(11)		(4)
C(14)	_	C(13)	_	C(11) C(12)	111.4 110.0	(4)
C(14)	_	C(13)	_	C(12) C(16)	101.5	(3)
C(12)	_	C(13)	_	C(16)	113.7	(3)
O(3)	_	C(14)	_	C(8)	109.5	(3)
O(3)	_	C(14)		C(8) C(13)	110.0	(3)
C(8)	_	C(14)	_	C(13)	101.8	(3)
C(16)	_	C(15)	_	C(8)	107.2	(3)
C(19)	_	C(16)	-	C(13)		(3)
C(19)	_	C(16)		C(15)	116.3	(4)
C(19)	_	C(16)	_	O(4)	115.0 105.2	(4)
C(13)	_	C(16)	_	C(15)	103.2	(3)
C(13)	_	C(16)		O(4)	106.8	(3)
C(15)		C(16)	_	O(4) O(4)	109.3	(3)
O(1)		C(20)	_	C(10)	109.3	(3)
C(3)		O(1)	_	C(10) C(20)	116.4	(4)
C(5)	_	O(1) O(2)	_	C(20) C(10)	106.6	(4)
-(-)		~ (~)		C(10)	100.0	(3)

spectra were recorded on an EPI-G3 spectrometer (Hitachi). 1 H- and 13 C-NMR spectra were taken on JNM-MH 100 (JEOL) and JNM-FX 100 (JEOL) spectrometers at 100 and 25.1 MHz, respectively, with tetramethylsilane as an internal standard (δ value). The abbreviations used are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Mass spectra were measured with an M-52 spectrometer (Hitachi) at 20 eV. Column chromatography and preparative thin-layer chromatography (PTLC) were carried out with Silica gel 60 (70—230 mesh, Merck) and Silica gel 60 PF₂₅₄ (Merck), respectively.

Reaction of 5 with p-Toluenesulfonic Acid (TsOH) in Acetone—TsOH (40 mg) was added to a suspension of 5 (40 mg) in acetone (2 ml). The reaction mixture was kept at 5 °C overnight, then diluted with H_2O , neutralized with 10% K_2Co_3 solution, and extracted with AcOEt. The AcOEt extract was subjected to PTLC (eluent: C_6H_6 -AcOEt (1:1)) to afford 6 (21 mg, 48%) and 7 (13 mg, 32%).

Acetonide of 5 (6)—Viscous syrup. MS m/z: 392 (M⁺, C₂₃H₃₆O₅). ¹H-NMR (CDCl₃) δ : 1.01, 1.07, 1.27, 1.37, 1.40 (each 3H, s), 3.62—4.10 (4H, m), 4.32 (1H, m), 4.52 (1H, s, C₁₄-H), 5.64 (1H, m, C₁-H).

Reaction of 5 with TsOH in MeOH—TsOH (30 mg) was added to a solution of 5 (33 mg) in MeOH (3 ml). The reaction mixture was kept for 3 h at room temperature, then diluted with H_2O , neutralized with 10% KOH solution, and extracted with AcOEt. The AcOEt extract was purified by PTLC (eluent: CHCl₃-MeOH (9:1)) and recrystallized from AcOEt to give 28 mg (86%) of 7.

3(S),20;5(R),10(R)-Diepoxy-14(R),16(R)-dihydroxy-1-epi-leucothane (7)—Colorless needles, mp 204—206 °C. Anal. Calcd for $C_{20}H_{30}O_4 \cdot H_2O$; C, 68.15; H, 9.15. Found: C, 68.16; H, 9.38. MS m/z: 334 (M⁺). IR ν_{max} cm⁻¹: 3315, 3.72 (2H, s), 4.18 (1H, s). ¹³C-NMR (C_5D_5N) δ : 21.7, 24.9, 26.7 (each q), 20.1, 23.3, 25.9, 34.8, 61.3 (each t), 33.0, 40.0, 53.5, 55.7 (each d), 40.8, 48.1 (each s), 65.4 (-CH₂ -O-), 77.0, 79.6, 88.7 (each > CH-O-), 80.5, 84.0 (each -C-O-). O-).

X-Ray Analysis of 7—The crystals, grown from an AcOEt solution, were colorless bisphenoidal ones. A sample with approximate dimensions of $0.5 \times 0.4 \times 0.3$ mm was chosen for the X-ray diffraction study. The lattice parameters and intensities were measured on a Philips PW 1100 diffractometer using $CuK\alpha$ radiation monochromated by means of a graphite plate. The intensities of 2165 reflections were measured within a 2Θ range of 156° as being above the 2σ (I) level out of 2218 theoretical ones in the same angular range.

Crystal data for 5: $C_{20}H_{30}O_4 \cdot H_2O$, MW = 352.5, orthorhombic, space group $P2_12_12_1$, Z=4, a=11.489 (11), b=24.010 (20), c=6.577 (7) Å.

The crystal structure was solved by the direct method using MULTAN⁵⁾ and refined by the block-diagonal least-squares method. The final R value was 0.08, including anisotropic temperature factors. No hydrogen atom contributions were taken into account. The final atomic parameters are listed in Table I and the bond lengths and valency angles in Tables II and III, respectively.

References and Notes

- 1) T. Kaiya, N. Shirai, and J. Sakakibara, J. Chem. Soc., Chem. Commun., 1979, 431, and references cited therein.
- 2) T. Kaiya, N. Shirai, and J. Sakakibara, J. Chem. Soc., Chem. Commun., 1981, 22.
- 3) T. Kaiya, N. Shirai, and J. Sakakibara, Tetrahedron Lett., 1979, 4297.
- 4) T. Kaiya and J. Sakakibara, Ann. Rept. Pharm. Nagoya City Univ., 30, 1 (1982), and references cited therein.
- 5) P. Main, M. M. Woolfson, and G. Germain, Acta Crystallogr., Sect. A, 27, 368 (1971).