Communications to the Editor

Chem. Pharm. Bull. **32**(7)2866—2869(1984)_

A STEREOSELECTIVE TOTAL SYNTHESIS OF A STABLE PROSTACYCLIN ANALOG, $dt - 9 \, (0) - \text{METHANO} - \Delta^{6} \, (9 \, \alpha) - \text{PROSTAGLANDIN I}_1$

Kazuo Koyama and Koichi Kojima^{*}
Chemical Research Laboratories, Sankyo Co., Ltd.,
1-2-58 Hiromachi Shinagawa-ku, Tokyo 140, Japan

9(0)-Methano- $\Delta^{6\,(9\,\alpha)}$ -PGI $_1$ ($\underline{3}$), a stable analog of PGI $_2$, has been synthesized regio- and stereoselectively via cyclopropylketoester (14)

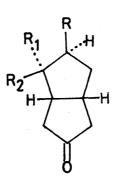
 $\label{eq:KEYWORDS} \textbf{ Frostacyclin analog; methano-PGI$_1$; cyclopropane ring; stereoselective synthesis; bicyclo[3.3.0]octane$

Currently, the stable prostacyclin (PGI $_2$, $\underline{1}$) analogs are attracting a great deal of attention because of their potential for use as therapeutic agents. One of the most promising compounds is 9(0)-methanoprostacyclin ($\underline{2}$), whose synthesis has already been described by ourselves $\underline{1}$) and others. Recently the synthesis of 9(0)-methano- $\Delta^{6(9\alpha)}$ -PGI $_1$ ($\underline{3}$), the double bond isomer of 9(0)-methanoprostacyclin ($\underline{2}$), has been reported $\underline{3}$) and found to have more potent activity than $\underline{2}$ in inhibition of platelet aggregation. We herein describe a new stereoselective total synthesis of $\underline{3}$ via the olefinic intermediate ($\underline{19}$).

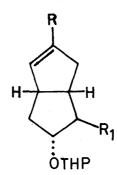
In order to synthesize the olefin $(\underline{19})$ regio- and stereoselectively, we selected as a key intermediate, the cyclopropylketoester $(\underline{14})$, which was synthesized as follows.

Reaction of the monoacetal (4) with Grignard reagent (PhCH $_2$ O(CH $_2$) $_5$ MgBr), prepared from 5-benzyloxy-1-bromopentane and Mg in ether, followed by treatment with p-TsOH in benzene in the presence of ethylene glycol under azeotropic distillation afforded the *endo*-olefin (5a) (1 H-NMR (CDCl $_3$) δ : 5.15 (1H, brs)) regioselectively 4) in 65% yield from 4. Epoxidation of 5a with m-chloroperbenzoic acid in CHCl $_3$ yielded the β -epoxide (6) in 69% yield. Treatment of 6 with

BF₃ etherate in toluene at -15°C gave a single product $(7)^{5}$ in 63% yield. Reduction of the ketone (7) with NaBH, yielded the α -alcohol (8) as the main product together with the β -alcohol (9) (α -OH: β -OH=4:1). The cyclopropane ring required for the regionelective introduction of the ω -side chain and $\Delta^{6\,(9\,\alpha)}$ -double bond (PG numbering), was then introduced after inversion of the α -hydroxy group in $\underline{8}$ into the β -hydroxy group by the following reactions. Treatment of $\underline{8}$ with TsCl and a catalytic amount of 4-dimethylaminopyridine in pyridine at room temperature for 20 hours afforded quantitatively the crystalline tosylate ($\underline{10}$), mp 70-72°C. The tosylate $(\underline{10})$ was then treated with 4 equivalent of KO_2 in the presence of 18-crown-6 (4 eq) in DMSO at room temperature under $\rm N_2$ atmosphere to give the β -alcohol (9) in 65% yield. The hydroxy-acetal (9) was converted to the hydroxyketone $(\underline{11})$ with 10% HCl in acetone at room temperature, which was then treated with ${
m MsCl-Et_3N}$ in ${
m CH_2Cl_2}$ to afford the mesylate (12a). The cyclopropanation reaction is now performed by DBU treatment (55°C, 20min) of $\underline{12a}$ giving the compound ($\underline{13}$) in 81% yield. Finally, treatment of 13 with dimethyl carbonate and NaH in 1,4-dioxane at 90°C for 3 hours yielded the desired β -ketoester (14) in 90% yield.


The 11α -hydroxy group and the $\Delta^{6(9\alpha)}$ -double bond (PG numbering) were then introduced regio- and stereoselectively as follows. The cleavage of the cyclopropane ring in 14 with formic acid in the presence of conc. sulfuric acid at room temperature afforded the β -formate (15) having the bicyclo[3.3.0] octane skeleton (C_2 - C_8 bond cleavage) in 58% yield with 36% recovery of the starting material (14). Stereoselective reduction of 15 with NaBH₄ in EtOH followed by protection of the hydroxy group as THP ether (dihydropyran and p-TsOH) afforded 16 in 79% yield. The methanolysis of the formate (16) with K_2 CO₃ in MeOH gave the β -alcohol (17) in 97% yield. Treatment of 17 with MsCl-Et₃N in CH₂Cl₂ gave the mesylate (18), which provided the desired olefin (19) on treatment with PhSeNa in EtOH at 80°C in 77% yield from 17.

The compound (19) was then converted into 9(0)-methano- $\Delta^{6(9\alpha)}$ -PGI $_1$ (3) by the following sequence of reactions. After reduction of 19 with LiAlH $_4$ in THF, the obtained alcohol (20) was oxidized to the aldehyde (21) with excess SO $_3$ -pyridine complex and Et $_3$ N in DMSO. The Wittig reaction of 21 with 2-oxoheptylidenetributyl-phosphorane gave the ketone (22) in 83% yield from 19. Reduction of 22 with NaBH $_4$ in the presence of CeCl $_3$ in MeOH gave the more polar α -alcohol (23a) and the less polar β -alcohol (23b), (15 α -OH:15 β -OH=3:2) 10) in 91% yield. The major isomer (23a) was treated with dihydropyran and p-TsOH in CH $_2$ Cl $_2$ followed by treatment with excess Na in liquid ammonia at -78°C yielding the alcohol (24) in 73% yield. Oxidation of 24 with CrO $_3$ -H $_2$ SO $_4$ in acetone at -25°C afforded the carboxylic acid (25) in 72% yield. Removal of the protecting groups of 25 with camphorsulfonic acid in aqueous acetone at 40°C for 3 hours gave the crystalline dl-9(0)-methano- $\Delta^{6(9\alpha)}$ -PGI $_1$ (3), mp 76-78°C, in 80% yield.

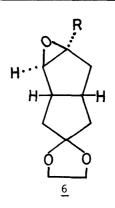

 $\underline{15}$; R₁=OCHO, R₂,R₃=O $\underline{16}$; R₁=OCHO, R₂=OTHP, R₃=H

17; $R_1 = OH$, $R_2 = OTHP$, $R_3 = H$

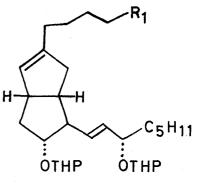
18; $R_1 = OMs$, $R_2 = OTHP$, $R_3 = H$

 $\begin{array}{c} \underline{11}; \ \mathbf{R}_1 = \mathbf{H}, \ \mathbf{R}_2 = \mathbf{OH} \\ \underline{12a}; \ \mathbf{R}_1 = \mathbf{H}, \ \mathbf{R}_2 = \mathbf{OMs} \\ \underline{12b}; \ \mathbf{R}_1 = \mathbf{OMs}, \ \mathbf{R}_2 = \mathbf{H} \end{array}$

 $\frac{19}{20}; R_1 = COOMe$ $\frac{20}{20}; R_1 = CH_2OH$


 $\frac{1}{21}$; $R_1 = CHO$

 $\frac{1}{22}$; $R_1 = \sqrt{C_5 H_{11}}$


23a; $R_1 = C_5H_{11}$

23b; $R_1 = \bigvee_{OH}^{OH} C_5 H_{11}$

 $R = (CH_2)_5 O CH_2 Ph$

13; $R_1 = H$ 14; $R_1 = COOMe$

 $\frac{24}{25}$; $R_1 = CH_2OH$

REFERENCES AND NOTES

- 1) K. Kojima and K. Sakai, Tetrahedron Lett., 1978, 3743.
- 2) S.M. Roberts and F. Scheinmann, ed., "New Synthetic Routes to Prostaglandin and Thromboxane," Academic Press, London, 1982.
- 3) Y. Ogawa and M. Shibasaki, Tetrahedron Lett., 25, 1067 (1984); M. Sodeoka and M. Shibasaki, Chem. Lett., 1984, 579, and references cited therein.
- 4) exo-Olefin isomer was not detected by ${}^{1}\text{H-NMR}$.
- 5) Assignment of β -orientation of the side chain is based on mechanistic consideration. See H.B. Henbest and T.I. Wringley, J. Chem. Soc., <u>1957</u>, 4596.
- 6) The configuration of the hydroxy group was assigned from $^1\text{H-NMR}$ signals of $\text{C}_2\text{-H}$, $(\underline{8}, \ \delta\colon 3.87\ (\text{t}, \ \text{J=6.5Hz}); \ \underline{9}, \ 3.90\ (\text{d}, \ \text{J=3Hz}))$. Molecular model analysis suggested that the compound having the larger coupling constant is the $\alpha\text{-alcohol}\ (\underline{8})$. Moreover treatment of $\underline{12b}$, derived from $\underline{8}\ (\text{i})\ 10\%\ \text{HCl}$ in acetone ii) MsCl-Et₃N in CH₂Cl₂), with DBU at 80°C resulted in recovery of $\underline{12b}$. This also supports the $\alpha\text{-configuration}$ of the hydroxy group in $\underline{8}$.
- 7) The bicyclo[3.3.0]octane skeleton of <u>15</u> was confirmed by the following reactions; Demethoxycarbonylation of <u>15</u> with NaI and AcOH in diglyme at 120°C, followed by methanolysis with K₂CO₃ in MeOH gave <u>11</u>.
- 8) The $\Delta^{6(9\alpha)}$ -double bond was confirmed by the following reactions; Treatment of 19 with aq. AcOH at 50°C, followed by oxidation (CrO $_3$ -H $_2$ SO $_4$ in acetone) and demethoxycarbonylation (NaI and AcOH in diglyme) gave 5b, whose structure was confirmed by an alternative synthesis of 5b by treatment of 5a with 10% HCl in acetone.
- 9) Weak bases, such as AcOK or PhSNa, also convert $\underline{18}$ to $\underline{19}$, in much lower yields.
- 10) Configurational assignment at the C-15 position (PG numbering) was based on relative TLC mobilities (silica gel) in wide assortment of PG C-15 isomeric pairs. This was also supported by the relative TLC mobility and relative biological activity of $\underline{3}$ and its 15β -isomer in the final 9(0)-methano- $\Delta^{6(9\alpha)}$ -PGI $_1$ stage.
- 11) No isomer was detected by 13 C-NMR and HPLC analysis. $\underline{3}$: Anal. Calcd for $^{\text{C}}_{21}^{\text{H}}_{34}^{\text{O}}_{4}$: C, 71.96; H, 9.78. Found: C, 71.88; H, 9.73. IR (CHCl $_3$) cm $^{-1}$: 3360, 1710, 1085, 970. 1 H-NMR (CDCl $_3$) δ : 3.00 (1H,m), 3.73 (1H,m), 4.10 (1H,m), 5.30 (1H,brs), 5.55 (2H,m).

(Received April 28, 1984)