Communications to the Editor

Chem. Pharm. Bull. 32(7)2870—2873(1984)

FURTHER INVESTIGATION OF PEPTIDE ANTIBIOTIC, HYPELCIN A: ISOLATION AND STRUCTURES OF HYPELCINS A-I, A-II, A-III, AND A-IV

Tetsuro Fujita, *,a Yoshihisa Takaishi, *a Kouji Matsuura, *a Yoshio Takeda, *a Yasuko Yoshioka, *a and Hans Brückner *b Faculty of Pharmaceutical Sciences, The University of Tokushima, *a Tokushima 770, Japan and Institut für Lebensmitteltechnologie der Universität Hohenheim, *b Garbenstrasse 25, D-7000 Stuttgart 70, F.R.G.

Four new antibiotics, hypelcins A-I, A-III, A-III, and A-IV were isolated from hypelcin A, previously thought to be a single compound, by high performance liquid chromatography and their structures have been established as (1-4), respectively, by fast atom bombardment mass spectrometry.

KEYWORDS — peptide antibiotic; hypelcin; peptaibol; α -aminoiso-butyric acid; fast atom bombardment mass spectrometry; peptide antibiotic HPLC; Hypocrea peltata

We have recently reported that the structures of hypelcin A (5)¹⁾ and trichopolyns I and II,²⁾ are α-aminoisobutyric acid (Aib)-containing peptide antibiotics which were named peptaibols.³⁾ The peptaibols such as alamethicins,⁴⁾ suzukacillin,⁵⁾ trichotoxin,⁶⁾ emerimicins,⁷⁾ and zervamicins⁸⁾ are of considerable biological interest because they facilitate ion transport across membranes by a mechanism involving pore formation in the membranes.⁹⁾ Hypelcin A has an uncoupling activity¹⁰⁾ on rat liver mitochondria and prevents^{1,11)} the growth of *Lentinus edodes*, a Japanese edible mushroom. Hypelcin A was crystalline and uniform in thin layer chromatography. However, very recently we have found that hypelcin A is a mixture of more than four components, using high performance liquid chromatography (HPLC). We here report the isolation and structural elucidation of the hypelcins A I-IV (1-4).

Crude hypelcin A^{11}) (HPL chromatogram, Fig. 1) was purified by reversed-phase HPLC on Chemopak Nucreosil (60 cm x 8 mm i.d. x 2) using methanol-water-2-propanol (45:27:20) to yield hypelcins A-I, mp 265-266°C, $[\alpha]_D^{21}$ -17.0° (c=1.0, MeOH) and A-II, mp 254-256°C, $[\alpha]_D^{21}$ -16.0° (c=1.0, MeOH) as the major components, and hypelcins A-III, mp 256-258°C, and A-IV, mp 259-261°C as the minor components. The amino acid analysis of these compounds suggests that hypelcins A-I and A-II¹²) are single compounds, but hypelcins A-III and A-IV still contain small amounts of other peptides (Table I). Molecular weights of 1927, 1913, 1941, and 1927 were assigned to the hypelcins A-I, A-II, A-III, and A-IV on the basis of their respective molecular ion species as they appeared on the positive ion fast atom bombardment (FAB) mass spectra, 13,14) Table I.

Hypelcin A-I has the same amino acid composition as hypelcin A. The presence of an acetyl group and twenty three amide carbonyl groups was revealed by,

Fig. 1. HPLC of Hypelcin A

Conditions: column, TOYO SODA ODS 120A

(30 cm x 7.8 mm i.d.); flow rate, 1.5 ml/min; eluant, methanol-water-2-propanol (45:25:20); detecter setting, UV 220 nm.

respectively, a signal at 8 2.05 ppm in the H-NMR spectrum and a number of carbon signals at δ 171-179 ppm in the 13 C-NMR spectrum (100 MHz). The positive FAB mass spectrum of hypelcin A-I showed three acyl cleavage ion series indicating sequences Ia, Ib, and Ic, as shown in Figure 2. Sequences Ia and Ib have all the amino acids of hypelcin A-I. Furthermore, the sum of the molecular weights of sequences Ia and Ib agrees with that of hypelcin A-I and the presence of leucinol (Lol) 15) was confirmed by gas chromatography mass spectrometry 1,11) of N, O-ditrifluoroacetyl derivative from the hydrolysate. Hence, the structure of hypelcin A-I can be represented as (1).

The assignment of a structure (2) for hypelcin A-II is as follows:

Fig. 2. FAB Mass Spectrum 16) of Hypelcin A-I

Table I	Amino acid	composition	and	Molecular	Ions	of	Hypelcins
---------	------------	-------------	-----	-----------	------	----	-----------

Amino acid composition a									Molecular	MW	
	Glu		Aib				Leu	Ile	[M + Na] +	[M + K] +	
A-I	3	2	9-10		1	1	1	0	1950	1966	1927
A-II	3	2	8-9	2	1	1	1	0	1936	1952	1913
A-III	3	2	9-10	1	1	1	0.79	0.14	1964	1980	1941
A-IV	3	2	9-10	1	1	1	0.36	0.87	1950	1966	1927

 $[^]a$ Determined by amino acids analysis, b Measured by FAB mass spectrometry. 14)

Table II. Diagnostic Ions Observed in FAB Mass Spectra 16) of the Hypelcins

										Acy	71 0	cleava	ge ic	ons, m/s	z							
Ser	ies	Series																				
		Ac-1	2	3^{α}	4	5	6	7 ^b	8	9	10	11	12	13,		1.	4 15	16	17	18	19	Lol
	Πa	: 128	225	310	381	466	551	679	764	877	962	1019	1104	1189,		Ίb	: 197	282	367	495	623	7 40
														1175,			: 197					
a<	IIIa	.: 128	225	310	381	466	551	679	764	877	962	1019	1104	1190, ^k	b<\	IIIk	: 197	282	367	495	623	754 ^a
														1189,	(IVb	: 197	282	367	495	623	740
	$^{ m Ic}$:		183	254	339	424	551	637	7 50	835											
	IIc	:		183	254	339	410	537	623		821		963									
c<	IIIc	::		183	254	339	424	551	637			892	977									
	l_{IVc}			183	254	339	424	551	637	750	835	892										

The ion peak m/z 183 in series c was formulated as H-Pro-Aib residue, bacyl cleavage — H in the series c, carries c, and cleavage +H, durant duran

Hypelcin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A-I(1) Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Aib-Aib-Pro-Val-Aib-Aib-Gln-Gln-Lol

A-II(2) Ac-Aib-Pro-Aib-Ala-Aib-Ala-Gln-Aib-Leu-Aib-Gly-Aib-Aib-Pro-Val-Aib-Aib-Gln-Gln-Lol

A-III(3) Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Aib-Aib-Pro-Val-Aib-Aib-Gln-Gln-C₇H₁₆NO

A-IV(4) Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Aib-Ile-Aib-Gly-Aib-Aib-Pro-Val-Aib-Aib-Gln-Gln-Lol

A(5) Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Leu-Aib-Gly-Aib-Aib-Pro-Val-Aib-Aib-Gln-Gln-Lol

the FAB mass spectrum shows a shift of ions above m/z 466 and 339 in the series a and c to positions 14 units lower than those of hypelcin A-I, respectively (Table II). These results indicate the replacement of Aib at position 6 in hypelcin A-I with an Ala residue in hypelcin A-II. Similary, the amino acid sequences of the minor peptides, hypelcins A-III (3) and A-IV (4), were deduced from FAB mass spectral data (Table II). The FAB mass spectral data of hypelcin A-III show that the Lol of hypelcin A-I is replaced by an unknown amino alcohol residue (${\rm C_7H_{16}NO}$). While, the FAB mass ions (Table II) of hypelcin A-IV appear to be very similar to those of hypelcin A-I, amino acid analysis shows that the major component of hypelcin A-IV is Ile instead of the Leu inhypelcin A-I. Consequently, the sequence of hypelcin A-IV can be explained by the replacement of Leu at position 9 in hypelcin A-I with the Ile residue.

ACKNOWLEDGEMENT We thank the Ministry of Education, Science and Culture of Japan for a Grant-in-Aid for Scientific Research and the Takeda Science Foundation for a research grant. We are grateful to Professor M. Suzuki, Faculty of Pharmacy, Meijo University, for valuable discussions and to the Pharmaceutical Sciences of Tokushima Bunri University for ¹³C-NMR measurements.

REFERENCES AND NOTES

- 1) T. Fujita, Y. Takaishi, and T. Shiromoto, J. Chem. Soc., Chem. Commun., 1979, 413.
- T. Fujita, Y. Takaishi, A. Okamura, E. Fujita, K. Fuji, N. Hiratsuka,
 M. Komatsu, and I. Arita, J. Chem. Soc., Chem. Commun., 1981, 585.
- 3) H. Brückner and H. Graf, Experientia, 39, 528 (1983).
- 4) R. C. Pandey, J. C. Cook, Jr., and K. L. Rinehart, Jr., J. Am. Chem. Soc., 99, 8469 (1977).
- 5) G. Boheim, K. Janko, D. Leibfritz, T. Ooka, W. A. König, and G. Jung, Biochim. Biophys. Acta, 433, 182 (1976).
- 6) H. Brückner, W. A. König, M. G. Greiner, and G. Jung, *Angew. Chem. Int. Ed. Engl.*, <u>18</u>, 476 (1979).
- 7) R. C. Pandey, J. C. Cook, Jr., K. L. Rinehart, Jr., J. Am. Chem. Soc., 99, 5205 (1977).
- 8) K. L. Rinehart, Jr., L. A. Gaudiso, M. L. Moore, R. C. Pandey, and J. C. Cook, Jr., J. Am. Chem. Soc., <u>103</u>, 6517 (1981).
- 9) G. Jung, H. Brückner, and H. Schmitt in "Structure and Activity of Natural Peptides," ed. by W. Voelter and G. Weitzel, Walter de Gruyter Berlin, New York, 1981, p. 75, and references cited therein.
- 10) Y. Takaishi, H. Terada, and T. Fujita, Experientia, 36, 550 (1980).
- 11) T. Fujita, Y. Takaishi, H. Moritoki, T. Ogawa, and K. Tokimoto, Chem. Pharm. Bull., 32, 1822 (1984).
- 12) Although hypelcin A-II shows a single peak on HPLC, the carbonyl region of $^{13}\text{C-NMR}$ indicats that hypelcin A-II contains small amounts of a similar peptide.
- D. J. Surman and J. C. Vickerman, J. Chem. Soc., Chem. Commun., <u>1981</u>, 324;
 M. Barber, R. S. Bordoli, R. D. Sedwick, and A. N. Tayler, *ibid.*, <u>1981</u>, 325.
- 14) Obtained on a JEOL JMS D-300 mass spectrometer employing 3 KeV xenon atom (from xenon ions charge exchanged with xenon gas) directed onto a matrix prepared from small amounts of a sample in MeOH, one drop of 1% NaI (or 1% KI) solution, and one drop of 1N HCl dispersed in triethanolamine on a tungsten ribbon. In the calibrations of molecular ions species (M + Na, M + K) exact mass numbers of the CsI ions were used.
- 15) The presence of Lol in hypelcins A-II and A-IV was also confirmed by gas chromatography-mass spectrometry of N, O-ditrifluoroacetyl derivative from their acid-hydrolysates.
- 16) Obtained on a JEOL JMS D-300 mass spectrometer employing 3 KeV xenon atom (from xenon ions charge exchanged with xenon gas) directed onto a matrix prepared from small amounts of a sample in MeOH and one drop of 1N HC1 dispersed in glycerol on a tungsten ribbon.

(Received May 1, 1984)