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A mathematical optimization technique was applied to obtain a formulation of indomethacin
(IMC)/polyvinylpolypyrrolidone/methyl ceilulose solid dispersion with a high dissolution rate and
high stability of IMC. Model formulations were prepared according to a composite spherical
experimental design based on the simplex method. The dissolution rate and chemical stability
of IMC were determined as response variables for deciding an optimum formulation. These
response variables were predicted by the second-order polynomial regression model of formula-
tion and process factors.

In order to optimize the formulation, regression equations of each response were mathema-
tically structured as a constrained nonlinear optimization problem. The solution was obtained
by application of the sequential unconstrained minimization technique. Experimental results
obtained for the optimum formulation agreed well with the predictions.

Keywords——sequential unconstrained minimization technique; composite spherical experi-
mental design; simplex method; optimum formulation; indomethacin; polyvinylpolypyrrolidone;
methyl cellulose; dissolution rate; stability of dissolution profile, chemical stability

Mathematical optimization techniques in pharmaceutical formulations, based on fac-
torial experimental design, have been proved to afford a useful approach for controlling the
pharmaceutical properties of tablets,” " capsules,® suspensions® and solid dispersions.'” In
these studies, the optimization of formulation has been done by means of the following steps.
First, model formulations are prepared according to statistically designed experiments. Next,
response variables such as the dissolution rate and stability which will decide the optimum
formulation are predicted quantitatively from the combination of formulation and process
factors. A second-order polynomial regression equation is usually applied for the prediction
of the response variables.” Finally, the formulation which gives the optimum value of each
response might be predicted within the constant limit values of factors. However, as is typical
in optimization problems, the best formulations for different response variables are not the
same. For example, the tablet formulation with the highest dissolution rate has relatively low
hardness.” Thus, the optimum formulation has to be taken as an acceptable formulation
which will sufficiently satisfy the primary objective under a set of various constraints.

The purpose of the present study was to evaluate the composite experimental design
based on a simplex method'!’ and constrained mathematical nonlinear optimization meth-
od!? as a technique for seeking the optimum formulation. Indomethacin (IMC)/
polyvinylpolypyrrolidone (PVPP)/methyl cellulose (MC) solid dispersions were selected as
a model formulation for the optimization problem. PVPP was used as a carrier of solid dis-
persions and MC was added as a stabilizing agent for dissolution.!® As the dissolution rate
of IMC was considered to be of primary interest, the objective was to increase the dissolution
rate without adversely changing other properties of the solid dispersions.
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Fig. 1. Geometrical Illustration of the Com-
posite Spherical Experimental Design Based
on the Simplex Method for Three Factors

TaBLE 1. Experimental Design for Three Factors

Factor level in coded form

Formulation

X, X, X;
1 —1 -1 I
2 I -1 —1
3 ~1 1 -1
4 1 I I
5 -3 0 0
6 V3 0 0
7 0 -J3 0
8 0 V3 0
9 0 0 -J3
10 0 0 V3
1 0 0 0

The composite spherical experimental design for three factors at five levels,'!’ which was
used in this study, is illustrated geometrically in Fig. 1 and a set of experiments based on F 1g. 1
is listed in Table I in coded form. This design demands at least eleven experiments, but the
number of experiments is the smallest in comparison with other experimental designs. All of
the experimental points are placed at the same distance from the center in the spherical design,
as shown in Fig. 1. Multiple regression analysis was applied to predict each response from the
combination of factors. Regression equations of each response were mathematically struc-
tured as a constrained nonlinear optimization problem, and the optimum formulation of
IMC/PVPP/MC solid dispersions was obtained by the application of the sequential uncon-
strained minimization.technique (SUMT).!?:!¥

Experimental

Materials——IMC was purchased from Sigma Chemical Co., Ltd. PVPP was generously supplied by BASF
Japan Ltd. MC with a viscosity of 80—120¢P in 2%, aqueous solution at 20 °C was purchased from Tokyo Kasei
Industrial Co., Ltd.

Preparation Method for Selid Dispersions——The preparation method for IMC/PVPP/MC samples powders is
shown in Chart 1.

The amounts of PVPP (X,), MC (X,) and ethanol (X;) were selected as factors (ethanol is the solvent for the
preparation of solid dispersions). Both X, and X, are formulation variables, while X, is a process variable. The
experiments listed in Table I in coded form were transformed to the physical units in an empirical way as summarized
in Table II.

Determination of Response Variables——The dissolution rate of IMC from samples, the stability of the
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: IMC1lg:
(1) dissolve in ethanol (31—169 ml)
I (2) add PVPP (1.27—4.73 g)
' (3) add MC (26.8—373 mg)
(4) agitate well for 5min
i (5) remove the solvent in vacuo at 70°C
i (6) dry in vacuo at room temperature for 24 h
i (7) grind in a mortar
| (8) sieve (100—200 mesh)

| sample ‘

Chart 1. Method for Sample Powder Preparation

TaBLe 1I. Level of Factors in Physical Units

Factor level in coded form

Factor — —
—V/ 3 -1 0 1 V/ 3
X,: PVPP (g) 1.27 2 3 4 4.73
X,: MC (mg) 26.8 100 200 300 373
X,: Ethanol (ml) 31 60 100 140 169

dissolution profile of IMC and the chemical stability of IMC in samples were selected as response variables.

a) Dissolution Rate: A paddle method was applied to the sample powders. The procedure and apparatus
described in dissolution test No. 2 (paddle method) in JP X were applied. A certain amount of sample powder
containing 62 mg of IMC was weighed accurately, and dispersed in 900 ml of 1/15M phosphate buffer solution (pH
6.4) at 37°C at a paddle rotation speed of 50 rpm. At appropriate intervals, 1 ml aliquots of the solution were
taken, and the volume was kept constant by adding the same amount of fresh dissolution medium at the same tem-
perature. The concentration of IMC was determined by the ultraviolet absorption method. In order to determine
the stability of the dissolution profile, the dissolution test was also applied to samples which had been kept for 30d
at 40°C under 75%, relative humidity (R. H.).

b) Chemical Stability: For the study of the chemical stability of IMC in solid dispersions to heat and moisture,
the residual amount of IMC in each sample was measured after storing them for 30d at 60°C under 75%, R.H. A
certain amount of sample powder which contained 10 mg of IMC was weighed accurately, and agitated well in 50 ml
of ethanol containing 0.012%, ketoprofen as an internal standard. One ml of the filtrate of this solution was di-
luted with 4 m! of acetonitrile. The concentration of IMC was determined by the high performance liquid chroma-
tography (HPLC) method.'*

Results and Discussion

In order to obtain a suitable index for the dissolution of IMC from the samples,
Wagner’s dissolution model'® was applied to the experimental data and the 169, dissolution
time (f,¢,,), 50%, dissolution time (fs0.,) and 847 dissolution time (fg4.,) Were calculated.
Wagner’s dissolution model is based on the log normal density function,'® and these
dissolution parameters are quite proper and convenient for quantitative comparison of a
given formulation with other formulations, because they are closely related to the mean and
standard deviation (+ ) of the log normal density function. In general, f54,, is widely used
as a dissolution index for pharmaceutical formulations. Therefore, t50,, Was selected as the
most important response variable for the comparison of dissolution behavior. The stability
of the dissolution profile (D,) was calculated by use of the following equation:
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" , 2
Dy=[(t164, = t169,*)/116s,] sou, = 150%)/1500,]
840, = loas, *)ta, I

where f;4,,*, 150,,* and g4, * represent the dissolution parameters determined after storing
samples for 30d at 40 °C under 75% R.H. The value of D is represented as the sum of the
squares of the normalized differences of each dissolution parameter. It was considered that the
dissolution profile was stable when the value of D, was sufficiently small. Chemical stability of
IMC in solid dispersions (C,) was expressed as the residual amount of IMC after storing
samples for 30d at 60 °C under 75% R.H. These response variables are listed in Table III.

TasLe 1II.  Experimental Values of Response Variables

Formulation L50s, (Min) D, C, (%)
1 2.00 0.680 95.1
2 1.23 0.954 87.9
3 1.86 1.25 94.9
4 1.16 0.973 90.4
5 2.52 1.12 96.1
6 1.10 1.35 90.7
7 2.08 0.657 92.5
8 1.49 1.88 93.9
9 1.54 1.86 87.5

10 1.17 1.26 88.5
11 1.18 2.74 86.3

Each datum is the mean of three determinations.

TaBLE IV. Optimum Regression Equation for Each Response Variable
Determined by Multiple Regression Analysis

Regression coefficient value

Coefficient :

ts0,, (min) D, G (%)
by 1.18 2.74 86.3
b, (X;) —0.393 —a ~2.36
b, (X,) —-0.172 0.270 —
by (X;) —-0.107 —0.158 —
by (X?) 0.199 —0.553 1.87
bs (X3) 0.190 —0.543 2.20
be (X3) 0.0452 —0.446 1.34
b, (X X3) 0.126 — —1.38
by (X, X;) 0.121 e -
by (X3X3) — — —
) 0.995 0.931 0.905
s 0.105 0.316 2.08
F9 25.69 6.54°) 4.50")

a) This factor is not included in the optimum regression equation.

b) Multiple correlation coefficient.
d) Observed F value. e) p<0.05.

¢) Standard deviation.
) p<O0.1.

Regression Analysis

The following second-order polynomial equation was used for the prediction of each
response variable:
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Y=by+b X, +b,X;+b3X;
+b, X34+ bsXE+beX3
+b. X, Xy + by X, X3+ 0o X, X5

where X,. X, and X; are the amounts of PVPP, MC and ethanol, respectively. These factors
are considered to be directly controllable. Y is the response variable and b, is the regression
coefficient. The optimum regression equation was obtained by investigating the overall
combination of factors at the point of statistical significance, that is, the best combination of
factors for the prediction of each response was selected from among 511 (2°—1) kinds of
regression equations. The correlation coefficient, which was doubly adjusted with degrees of
freedom,'® was used as an index for the selection of the optimum combination of factors.
Optimum regression equations obtained are summarized in Table IV. Each response variable
was predicted accurately by the second-order polynomial equation, because values of r were
satisfactory and the regression equations were significant with high F, values. The physical
significance of the regression equation was expressed by means of contour graphs.

Contour Graphs

The significance of each regression equation was elucidated by the application of contour
graphs. Figure 2 shows the contour graphs for f5,,. As the value of 150, Was predicted as a
function of all factors, the contour graphs were drawn by using the combination of the cross
section of the X, axis against the response surface for t54,, which was expressed by X, and X,.
The contour graphs of D, and C, were also drawn in the same way, as shown in Figs. 3 and 4.
The optimum position of 54, was defined as being at about the center of the graphs (X, =1,
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Fig. 2. Contour Curves of 7soy, (min) as a Function of X, X, and X;
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Fig. 3. Contour Curves of D, as a Function of X,, X, and X;

NII-Electronic. Library. Service



No. 1 297

Xy=-1732 X5=—1.000 X3 =0.000 X5=1.000 X;=1.732
2} / 2}t / 2t // 2 r // 2t y;
100/\ 100 106 100 100/\
Ir /e 1’/95/\ 11/95 L /o5 TP
90
~ ) 9 ~ o~ ~
0 0 ~of U = 0F/[ 90 = of QU =0t 0
-1f -1t ~ 1t U —~1f —1r
100 100 4 . \ y 100
_2 n 1 /4 L - i] ! JllOIO 72‘\100 N L /1\00 ‘2*1001 L 1/1(?0 “2— ! L /n i
2101 2zX -2-1 012X —2-1 01 2X —2-1 0 1 2X -2-1 0 1 2x,

Fig. 4. Contour Curves of C, (%) as a Function of X;, X, and X,

X,=0and X;=0in coded form), but this position leads to the worst results for D, and C, as
shown in Figs. 3 and 4. Therefore, it is obvious that a formulation with a high dissolution rate
of IMC is not stable to heat and moisture. Though the primary objective in solid dispersions is
to enhance the dissolution rate, at the same time, we should also consider the stability of the
dissolution profile and chemical stability. A constrained mathematical optimization method
was applied to solve this problem as follows.

Mathematical Optimization

The optimization of the formulation of IMC/PVPP/MC solid dispersions was done by an
application of the SUMT method.!?!” In general, the constrained nonlinear optimization
problem is to minimize the object function, f(x), under the following inequality and equality
constraints:

920 i=1, 2, 3, ... m ()
h{x)=0 j=1, 2, 3, ..., p (2)

where g; (x) is the inequality constraints and A ;(x)1s the equality constraints. The constrained
optimization problem described above was transformed to the unconstrained optimization
problem by adding penalty functions as follows:

m P
P, =f()=r} In[g(x)]+1/n Y [hx)]? )

i=1 =1
where P(x, r) is the transformed object function and r is a parameter of P(x,r). The second
and third terms in equation 3 correspond to inequality constraints, g,(x), and equality
constraints, /1(x), respectively. These terms act as the penalty functions, because the values of
the second or third terms will increase abruptly when the values of gi(x) are close to zero or the
values of /1(x) deviate from zero. The minimization of the function P(x,r) was carried out by
means of general unconstrained nonlinear optimization methods under constant value of r
(r>0). The optimum solution is obtained as the point, x(r), which gives the minimum value of
P(x,r) when the value of r is sufficiently close to zero.

Fonner et al. reported the application of the Lagrangian method to solve a similar
problem,* and the optimization of tablet formulation was demonstrated in the case of two
factors. However, the approach to the optimization problem with the Lagrange multipliers,
though applicable to many responses, is generally limited to two factors.®!® On the other
hand, the SUMT method is applicable to more complex and realistic optimization problems.

The purpose of the optimization of IMC/PVPP/MC solid dispersions is to find a
formulation with a high dissolution rate as well as acceptable stability of the dissolution
profile and acceptable chemical stability. Thus, the regression equations of each response
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TaBLE V. Optimum Formulation

IMC (g) 1
PVPP (g) 4.55
MC (mg) 185
Ethanol (ml) 46

TaBLE VI. Response Variables of the Optimum Formulation

Response Predicted Experimental®
tsos, (min) 1.02 0.994 +0.031

D, 0.751 0.973+0.058

C (%) 90.0 89.3+0.5

a) Represented as the mean + S.D. of 6 determinations.

variable listed in Table IV were structured as a constrained nonlinear optimization problem.
Based on the contour graphs of D, and C,, two kinds of constraints (D,<1 and C,=90%)
were selected as proper and acceptable critical conditions for stability of the dissolution
profile and chemical stability.

Mathematically, this constrained nonlinear optimization problem can be described as
follows: Minimization of t5,,, under the following constraints,

[-D,20 4)
C,—902=0 (%)
3-X1z0 (6)
3-X220 (7
3-X320 (®)

Equations 6, 7 and 8 are constraints to keep the values of X,, X, and X; in the experimental
region. In this study, Powell’s conjugate gradient method!®’ was used to solve this uncon-
strained nonlinear optimization problem, which was transformed by the SUMT method.
Thus, X, =1.55, X, =—0.149 and X; = —1.35 were obtained in coded forms as the optimum
formulation of IMC/PVPP/MC solid dispersions. These values were transformed to physical
units and the results are listed in Table V. While the experimental value of D, was a little larger
than predicted, the predicted values of other responses coincided well with the experimental
data as summarized in Table VI. Chemical stability of IMC in the optimum formulation was
also investigated after storing it for 30d at 40°C under 759 R.H., and 98.2+0.39%,
(mean+S.D.) of IMC remained (residual amount; 6 determinations). Thus, it was considered
that IMC in the optimum formulation was very stable under the usual storage conditions.

The optimum formulation is defined on the contour graphs shown in Fig. 5. It was found
that the optimum point corresponds to the intersection of the contour line for #54,, = 1.02 min
(optimum value) and the constrained curve for C,=909%,. On the other hand, the optimum
point was placed in the outer region defined by the constrained curve for D = I. Therefore, the
optimum formulation was not directly affected by the constraint of D <1. This result shows
that the optimum formulation may be varied by minor changes of the restricting values
assigned to the constraints. Changes of the predicted values of 15, resulting from
modifications of the restricting values are shown in Figs. 6 and 7.
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The value of t5,,, increased abruptly when the restricting values of C, were increased to
more than 909, as shown in Fig. 6. Though the change of l50, Was relatively small upon
modification of the restricting values of D, as shown in Fig. 7, the value of Isy, increased when
the restricting values of D, were decreased to less than 1. Determination of the sensitivity of
the primary objective to the tightening or relaxation of restrictions made it possible to decide
suitable restricting values for the multiple constraints. It appears that the restricting values of
D, and C; selected in this study were quite proper and significant.

Based on the above considerations, the optimization of formulation of IMC/PVPP/MC
solid dispersions could reasonably be done by application of the SUMT method. The methods
described in previous papers®!? have various disadvantages, e.g., they frequently give plural
solutions for the suitable formulations, while the SUMT method gives a singular solution
strictly obtainable as the best formulation. Furthermore, the SUMT method is applicable to
more complex and realistic optimization problems in comparison with the Lagrangian
method.> This sort of approach, including a spherical experimental design based on the
simplex method, should be applicable to other practical optimization problems in the
pharmaceutical field.

Acknowledgement A part of this study was supported by funds from the Otani Research Grant, Hoshi

NII-Electronic Library Service



300 Vol. 33 (1985)

University. The authors are very grateful to BASF Japan Ltd. for supplying materials. Thanks are also due to Mr.
Shigeyuki Tsukagoshi for his assistance in the experimental work.

References and Notes

1) This paper forms Part XLIX of ““Pharmaceutical Interactions in Dosage Forms and Processing.” The preceding
paper, Part XLVI1I: K. Masumoto, K. Matsumoto, A. Yoshida, S. Hayashi, N. Nambu, and T. Nagai, Chem.
Pharm. Bull., 32, 3720 (1984).

2) A part of this work was presented at the 104th Annual Meeting of the Pharmaceutical Society of Japan, Sendai
1984.

3) Present address: SS Pharmaceutical Co., Ltd., Oaki-cho-2-32, Nakamura-ku, Nagoya 453, Japan.

4) Formerly, Hoshi Institute of Pharmaceutical Sciences.

5) D. E. Fonner, Jr., J. R. Buck, and G. S. Banker, J. Pharm. Sci., 589, 1587 (1970).

6) J. B. Schwartz, J. R. Flamhortz, and R. H. Press, J. Pharm. Sci., 62, 1165 (1973).

7) E. Fenyvesi, K. Takayama, J. Szejtli, and T. Nagai, Chem. Pharm. Bull., 32, 663 (1984).

8) E. Shek, M. Ghani, and R.E. Jones, J. Pharm. Sci., 69, 1135 (1980).

9) J. B. Schwartz, J. Soc. Cosmet. Chem., 32, 287 (1981).

10) K. Takayama, N. Nambu, and T. Nagai, Chem. Pharm. Bull., 31, 4496 (1983).

11) M. Asao, T. Kusunoki, T. Ando, and T. Nakamura, “'Jikken Keikakuho,” Nikkagiren, Tokyo, 1973, p. 331.

12) A. V. Fiacco and McCormick, ‘“‘Nonlinear Programming: Sequential Unconstrained Minimization
Techniques,” John Wiley and Sons, New York, 1968.

13) This calculation was carried out on a Toshiba PA-7010 personal computer with a program written by the
authors.

14) S.J. Soldin and T. Gero, Clin. Chem., 25, 589 (1979).

15) J. Wagner, J. Pharm. Sci., 58, 1253 (1969).

16) T. Haga, H. Takeuchi, and T. Okuno, Quality, J.S.Q0.C., 6, 35 (1976).

17) This calculation was carried out on a HITAC M280H computer with the SUMT program in the mathematical
program library at the Computer Center of the University of Tokyo.

18) G. Hadley, “*Nonlinear and Dynamic Programming,” Addison-Wesley Publishing Co., Massachusetts, 1964.

19) M. J. D. Powell, Computer J., 7, 155 (1964).

NII-Electronic Library Service





