Chem. Pharm. Bull. 33(1) 347—350 (1985)

Asymmetric Reduction of 4-Phenyl-3(E)-buten-2-one by Using Lithium Aluminum Hydride Partially Decomposed with (-)-N-Methylephedrine and Achiral Secondary Amine

MOTOJI KAWASAKI and SHIRO TERASHIMA*

Sagami Chemical Research Center, 4-4-1, Nishi-Ohnuma, Sagamihara, Kanagawa 229, Japan

(Received April 25, 1984)

The optical rotation of optically pure (S)-(-)-4-phenyl-3(E)-buten-2-ol ((S)-(-)-2) was determined on the basis of nuclear magnetic resonance (NMR) spectral measurements of the acetate in the presence of a chiral shift reagent. Our former result on the asymmetric reduction of 4-phenyl-3(E)-buten-2-one (1) had to be corrected.

The title chiral hydride prepared by using diphenylamine or 2-anilinopyridine as an achiral additive was found to reduce 1, affording (S)-(-)- or (R)-(+)-2 in 66% or 53% optical yield.

Keywords—asymmetric reduction; lithium aluminum hydride; (-)-N-methylephedrine; (S)-(-)-4-phenyl-3(E)-buten-2-ol; (R)-(+)-4-phenyl-3(E)-buten-2-ol; 4-phenyl-3(E)-buten-2-one; N-ethylaniline; diphenylamine; 2-anilinopyridine; secondary amine

In our previous report,¹⁾ the asymmetric reduction of 4-phenyl-3(*E*)-buten-2-one (benzalacetone) (1) by the use of lithium aluminum hydride (LAH) partially decomposed with (1R, 2S)-(-)-*N*-methylephedrine [(-)-*N*-methylephedrine] and *N*-ethylaniline was claimed to afford (S)-(-)-4-phenyl-3(*E*)-buten-2-ol ((S)-(-)-2), $[\alpha]_D^{20}$ -24.2° (c=5.00, chloroform), in 98% yield. The optical yield of (S)-(-)-2 was calculated as 98% ee based on the assumption that (*R*)-(+)-2 having the maximum rotation value, $[\alpha]_D^{rt}+24.7$ ° (c=5.000, chloroform),²⁾ was optically pure.³⁾

Since it was recently disclosed that (S)-(-)-2 having $[\alpha]_D^{23} - 29.7^{\circ}$ (c = 5.01, chloroform) and $[\alpha]_D - 35.2 \pm 1.1^{\circ}$ (chloroform) should be $72^{\circ}/_0^{4}$ and $100^{\circ}/_0^{5}$ optically pure, respectively, we re-examined the asymmetric reduction of 1. It was found that our former result could not be reproduced and that the asymmetric reduction usually gives (S)-(-)-1 showing a lower optical rotation, $[\alpha]_D^{20} - 18.6^{\circ}$ (c = 5.26, chloroform). By using the reported method, the optical purity of this sample was determined to be $47^{\circ}/_0$ ee by measuring the nuclear magnetic resonance (NMR) spectrum of the acetate in the presence of tris[3-(heptafluoropropylhydroxymethylene)-d-camphorato]europium(III)[Eu(hfc)_3]. Accordingly, the optical rotation of optically pure (S)-(-)-2 can be estimated as $[\alpha]_D^{20} - 39.6^{\circ}$ (chloroform).

OH
OH
OH
OF
OF
$$(S)-(-)-2$$
 $(R)-(+)-2$
Chart

Optically active allylic alcohols ((S)-(-)- and (R)-(+)-2) are frequently utilized as standard chiral compounds for synthetic studies of optically active compounds and for studies

Vol. 33 (1985) 348

TABLE I. Asymmetric Reduction of 4-Phenyl-3(E)-buten-2-one with LAH Partially Decomposed with (-)-N-Methylephedrine and Achiral Secondary Amine^{a)}

Run	Achiral amine — additive ^{b)}	Optically active 4-phenyl-3(E)-buten-2-ol (2)			
		Chemical yield (%) ^{c)}	$[\alpha]_{D}^{20} (^{\circ})$ $(c, \text{CHCl}_{3})^{d})$	Optical yield (%) ^{e)}	Absolute confign. ^{e)}
1^{f}	NHEt	94	-18.6 (5.26)	47	(S)
2	O N O	97	-26.0 (6.86)	66	(S)
3	N N	86	-25.0 (4.26)	63	(S)
4		88	-25.6 (5.00)	65	(S)
5	NHCH ₂ P	^h 79	-7.3 (4.94)	18	(S)
6	(O _N)	62	-7.1 (4.10)	18	(S)
7	H N H	94	-18.0 (5.20)	45	(S)
8		20 (43)	-20.8 (1.66)	53	<i>(S)</i>
9	N O	64	+0.7 (4.00)	2	(<i>R</i>)
$10^{g)}$	NHEt	89	+13.3 (4.80)	34	(<i>R</i>)
11	$\bigcap_{N} \bigcap_{H}$	79	+20.9 (5.04)	53	(<i>R</i>)
12		76 (15)	+17.8 (4.64)	45	(<i>R</i>)
13		15 (44)	-1.2 (6.50)	3	<i>(S)</i>

a) All reactions were carried out using LAH (3.3 eq) partially decomposed with (-)-N-methylephedrine (3.6 eq) and achiral secondary amine additive (7.2 eq) in ether at -78 °C for

Reported in ref. 8.

Achiral secondary amines except for 2-ethylaminopyridine⁸⁾ and $2-\beta$ -naphthylaminopyridine⁹⁾ are all commercially available.

Optically active 2 which contains some impurities was purified by column chromatography (CHCl₃, then CHCl₃-EtOAc (4:1)). The chemical yield was calculated for the pure sample.

d) Measured on a sample further purified by bulb-to-bulb distillation.
 e) Optically pure (S)-(-)-2 gives [α]_D²⁰ - 39.6° (CHCl₃).
 f) LAH (3.3 eq) partially decomposed with (-)-N-methylephedrine (3.4 eq) and N-ethylaniline (6.8 eq) was used. See ref. 1 and the experimental section.

of reaction mechanisms.⁵⁻⁷⁾ Therefore, the asymmetric reduction of **1** was further examined by employing chiral hydrides produced by the use of various types of achiral secondary amines as additives. The results are summarized in Table I.

When 1 was treated with the chiral hydride prepared by using diphenylamine as an additive, (S)-(-)-2, 66% ee, was obtained in 97% yield (Table I, run 2), while the chiral hydride containing 2-anilinopyridine as an additive produced (R)-(+)-2, 53% ee, in 79% yield (Table I, run 11). The chiral hydride prepared by using 2-ethylaminopyridine as an additive, which had been developed as a reducing agent suitable for achiral cyclic ketones, was found to give a poor result (Table I, run 10).

While further improvement of the optical yield is required, our new reagents might be convenient for preparing an enantiomeric pair of optically active 2 with 50-70% ee.

Experimental¹⁰⁾

2-\beta-Naphthylaminopyridine—Prepared from 2-aminopyridine and β -naphthol according to the reported method.⁹⁾ mp 132—133 °C (lit.,⁹⁾ mp 135 °C).

(S)-(-)-4-Phenyl-3(E)-buten-2-ol ((S)-(-)-2)—2) Table I, Run 1: Treatment of 1 in the reported manner gave (S)-(-)-2 as a colorless oil in 94% yield after extractive isolation and purification by column chromatography (EtOAc-C₆H₁₄(1:4) \rightarrow EtOAc-C₆H₁₄(1:1)). The optical rotation was recorded on a sample further purified by bulb-to-bulb distillation, bp 150 °C (5 mmHg) (bath temp.), $[\alpha]_D^{20} - 18.6$ ° (c = 5.26, CHCl₃). Infrared (IR) and NMR spectra of this oil were identical with those reported. The oily alcohol was treated with Ac₂O-Py, giving (-)-4-phenyl-3(E)-buten-2-yl acetate as a colorless oil in quantitative yield, bp 150 °C (5 mmHg) (bath temp.), $[\alpha]_D^{20} - 80.4$ ° (c = 5.44, CHCl₃). IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 1740 (ester). NMR (CDCl₃) δ : 1.40 (3H, d, J = 6 Hz, CH₃CH), 2.05 (3H, s, CH₃CO), 5.46 (1H, dq, J = each 6 Hz, CHO), 6.13 (1H, dd, J = 15 and 6 Hz, J = 15 Hz, ArCH₂), 7.1—7.5 (5H, m, aromatic protons). MS J = 1.40 (M⁺), 129, 115. MS. Calcd for C₁₂H₁₄O₂ (M⁺, J = 1.40 (M⁺, J = 1.40) (M⁺), 129, 115. MS. Calcd for C₁₂H₁₄O₂ (M⁺, J = 1.40) (M⁺), 190.0993. Found: 190.1006. The NMR spectrum of this sample measured in the presence of Eu(hfc)₃ (the acetate: Eu (hfc)₃, 9:7) showed the acetyl group signal as two singlets at 5.52 and 5.45 ppm in an integration ratio of 73.6:26.4. Therefore, the optical purity of this sample was determined as 47% ee. Based on this value, the optical rotation of optically pure (S)-(-)-1 could be estimated as $[\alpha]_D^{20} - 39.6$ ° (CHCl₃).

b) Table I, Run 2: An ethereal solution (14 ml) of (-)-N-methylephedrine (mp 85—86 °C, $[\alpha]_D^{20}$ – 30.2 ° (c = 4.48, MeOH)^{1.8}) (1.94 g, 10.8 mmol) was added to a suspension of LAH (376 mg, 9.9 mmol) in Et₂O (8.5 ml), and the mixture was heated at reflux for 1 h with stirring. An ethereal solution (8.5 ml) of diphenylamine (3.66 g, 21.6 mmol) was added to the ethereal suspension prepared above, and the mixture was further heated at reflux for 1 h with stirring to give a suspension of the reducing reagent.

A solution of 1 (439 mg, 3.0 mmol) in Et₂O (3 ml) was added to the suspension of the reducing reagent cooled at $-78\,^{\circ}$ C, and the mixture was stirred at the same temperature for 3 h. MeOH (0.5 ml) was added to quench the reduction, then the mixture was diluted with 3n HCl (30 ml), and extracted with Et₂O. The ethereal extracts were combined and washed successively with satd. NaCl, satd. NaHCO₃, and satd. NaCl. Filtration and concentration *in vacuo* gave an yellow oil, which was purified by column chromatography (CHCl₃, then CHCl₃-EtOAc (4:1)) to afford (S)-(-)-2 as a colorless oil (430 mg, 97%). The optical rotation was measured on a sample further purified by bulb-to-bulb distillation (417 mg, 94%), bp 150 °C (5 mmHg) (bath temp.), [α]_D²⁰ - 26.0 ° (c=6.86, CHCl₃). Since optically pure (S)-(-)-2 gives [α]_D²⁰ - 39.6 ° (CHCl₃), the optical yield of this sample could be calculated as 66% ee. The spectral (IR and NMR) properties of this sample were identical with those reported. ¹⁾

(R)-(+)-4-Phenyl-3(E)-buten-2-ol ((R)-(+)-2)—Table I, Run 11: A similar reaction procedure to that described above was carried out by using 2-anilinopyridine (3.68 g, 21.6 mmol) as an achiral amine additive, giving (R)-(+)-2 as a colorless oil (350 mg, 79%) after extractive isolation and purification by column chromatography (CHCl₃, then CHCl₃-EtOAc (3:1)). Measurement of the optical rotation was performed on a sample further purified by bulb-to-bulb distillation (343 mg, 77%), bp 150 °C (5 mmHg) (bath temp.), $[\alpha]_D^{20}$ +20.9° (c = 5.04, CHCl₃). The optical yield of this sample was similarly estimated to be 53% ee.

References and Notes

- 1) a) S. Terashima, N. Tanno, and K. Koga, J. Chem. Soc., Chem. Commun., 1980, 1026; b) N. Tanno and S. Terashima, Chem. Pharm. Bull., 31, 837 (1983).
- 2) J. Kenyon, S. M. Partridge, and H. Phillips, J. Chem. Soc., 1936, 85.
- 3) In order to determine the optical purity of (S)-(-)-2, measurement of the NMR spectrum of (\pm) -2 was carried out in the presence of Eu(hfc)₃. Since separation of methyl and/or methine signals of (\pm) -2 could not be observed, we assumed the maximum reported value²⁾ to be 100% ee (see footnote 10 in ref. 1b).

- 4) T. Sato, Y. Gotoh, Y. Wakabayashi, and T. Fujisawa, Tetrahedron Lett., 24, 4123 (1983).
- 5) H. L. Goering, S. S. Kantner, and C. C. Tseng, J. Org. Chem., 48, 715 (1983).
- 6) a) H. C. Brown and G. G. Pai, *J. Org. Chem.*, **47**, 1606 (1982); b) T. Hayashi, T. Hagiwara, M. Konishi, and M. Kumada, *J. Am. Chem. Soc.*, **105**, 7767 (1983); c) K. Soai, H. Oyamada, and T. Yamanoi, *J. Chem. Soc.*, *Chem. Commun.*, **1984**, 413.
- 7) C. Fuganti, P. Grasselli, F. Spreafico, and C. Zirotti, J. Org. Chem., 49, 543 (1984).
- 8) a) M. Kawasaki, Y. Suzuki, and S. Terashima, Chem. Lett., 1984, 239; b) Idem. Chem. Pharm. Bull., 33, 52 (1985).
- 9) N. P. Buu-Hoï, J. Chem. Soc., 1952, 4346.
- All boiling points are uncorrected. A Shibata GTO-250R glass tube oven was used for bulb-to-bulb distillation. IR spectral measurements were performed with a JASCO A-202 diffraction grating infrared spectrometer. NMR spectra were measured with a Varian EM 390 spectrometer (90 MHz). Measurements of optical rotations were performed using a Union PM-201 automatic digital polarimeter. All reactions were carried out using anhyd. solvents, and the combined organic extracts obtained in each experiment were dried over anhyd. MgSO₄ before filtration and concentration *in vacuo* with a rotary evaporator. Column chromatography was performed using silica gel (SiO₂) as an adsorbent. The following abbreviations are used for solvents and reagents: chloroform (CHCl₃), ether (Et₂O), ethyl acetate (EtOAc), lithium aluminum hydride (LAH).