Chem. Pharm. Bull. 33(10)4242--4246(1985)

Synthese de Methyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazines

JEAN-CHARLES LANCELOT, DANIEL LADURÉE et MAX ROBBA*

Laboratoire de Chimie Thérapeutique, U.E.R. des Sciences Pharmaceutiques, Université de Caen, 1, rue Vaubénard, 14032 Caen Cédex, France

(Reçu le 18 Fevrier 1985)

The synthesis of 2-methyl-pyrido[3,2-e]pyrrolo[1,2-a]pyrazine is described. The starting materials, 2-amino-6-methyl-3-nitropyridine and 2-amino-6-methyl-3-hydroxypyridine, were converted into pyrrolyl derivatives by using 2,5-dimethoxytetrahydrofuran in glacial acetic acid. Subsequent elaboration of the latter afforded the title compounds. The proton nuclear magnetic resonance (¹H-NMR) spectra of the products were also studied.

Keywords—pyrrole; pyrazine; pyridine; intramolecular cyclization; ¹H-NMR

Dans le cadre d'une étude générale de composés hétérocycliques nouveaux à visée antinéoplasique, nous avons récemment décrit la synthèse de dérivés résultant de la fusion des pyrrolopyrazines ou des pyrrolodiazépines avec le thiophène,¹⁾ le benzothiophène ou le benzofuranne,²⁾ le carbazole,³⁾ la quinoléine,⁴⁾ la pyrazine,⁵⁾ et la pyridine.⁶⁾ L'objet de cette publication porte sur la synthèse de dérivés nouveaux de ce type, les méthyl-2 pyrido[3,2-e]-pyrrolo[1,2-a]pyrazines.

L'accès à ces hétérocycles est possible à partir de l'amino-2 méthyl-6 nitro-3 pyridine (2)⁷⁾ et de l'amino-2 hydroxy-3 méthyl-6 pyridine (1)⁷⁾ par la mise en oeuvre de la réaction de Clauson-Kaas.⁸⁾ Le diméthoxy-2,5 tétrahydrofuranne dans l'acide acétique permet d'accéder à la méthyl-6 nitro-3 (pyrrolyl-1)-2 pyridine (3) et à l'hydroxy-3 méthyl-6 (pyrrolyl-1)-2 pyridine (6). La méthyl-6 nitro-3 pyrrolopyridine (3) fournit, après réduction par de l'hydrazine hydratée en présence de nickel de Raney, l'amino-3 méthyl-6 pyrrolopyridine (4) qui est salifiable dans l'éther éthylique par l'acide chlorhydrique gazeux, et qui donne le chlorure de méthyl-6 (pyridyl-1)-2 pyridinyl-3 ammonium (5). Soumise à l'action du phosgène, l'hydroxy-3 méthyl-6 pyrrolopyridine (6) permet l'accès à l'oxazinone (7). L'oxo-6 mèthyl-2 pyridopyrrolo pyrazine (8) peut être obtenue de deux façons, soit par un chauffage prolongé de l'amine (4) en présence de phosgène dans le toluène, soit à partir de l'oxazinone (7) par un chauffage dans l'urée en fusion.

La réaction de chlorodéhydroxylation effectuée au moyen de l'oxychlorure de phosphore en présence de pyridine sur l'oxo-6 méthyl-2 pyridopyrrolopyrazine (8) conduit à la chloro-6 méthyl-2 pyridopyrrolopyrazine (9). Par réduction catalytique, cette dernière fournit l'hétérocycle fondamental: la méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (11). Cet hétérocycle peut également être obtenu à partir de l'amine (4) par chauffage à reflux dans l'acide formique.

Le traitement de la chloro-6 méthyl-2 pyridopyrrolopyrazine (9) par de l'hydrazine hydratée dans l'éthanol donne l'hydrazino-6 méthyl-2 pyridopyrrolopyrazine (10). Afin d'obtenir des composés solubles dans l'eau, nous avons réalisé des réactions de protonation sur la méthyl-2 pyridopyrrolopyrazine (11) au moyen, soit d'acide chlorhydrique gazeux, soit d'acide bromhydrique aqueux, afin d'obtenir respectivement le monochlorhydrate (12) et le monobromhydrate (13). Le site de protonation a pu être déterminé par comparaison des spectres de résonance magnetique nucleaire (RMN) des sels (12) et (13) par rapport à la base

Fig. 1

TABLEAU I. Paramètres RMN Relatifs aux Dérivés de la Méthylpyridine

N°	δ H pyrroliques				δ H pyridiniques		δ autres protons	Constantes de
	H-2	H-3	H-4	H-5	H-4	H-5		couplage
3	7.00	6.20	6.20	7.00	8.30	7.33	$CH_3 = 2.53$	$J_{\text{H4-H5}} = 8.10 \text{Hz}$
4	7.10	6.15	6.15	7.10	6.85	7.10	$CH_3 = 2.28$; $NH_2 = 4.76$	ин4-н5 отготте
5	7.08	6.13	6.13	7.08	6.83	7.08	$CH_3 = 2.26$; $NH_2 + Cl^- = 7.80$	
6	7.60	6.13	6.13	7.60	6.86	7.23	$OH = 10.06$; $CH_3 = 2.38$	

(11). En effet, il apparaît que la quaternarisation de l'azote N5 se traduit sur les spectres des sels par un déblindage marqué des protons H6, H7, H8 et H9. La réaction de Vilsmeier-Haack^{9,10)} sur la méthyl-2 pyridopyrrolopyrazine (11) introduit un groupe formyle en 9 dans de bonnes conditions pour donner la formyl-9 méthyl-2 pyridopyrrolopyrazine (14). La position-9 du groupement formyle est déterminée par l'étude de son spectre de RMN; en effect, on note la présence d'une constante ortho J_{8-7} de 4,20 Hz et simultanément la disparition de la constante J_{9-6} précédemment observée dans l'hétérocycle fondamental (11).

D'autre part, conformément à ce que nous avons observé antérieurement, la réaction de diazotation sur l'amine (4) ne permet pas d'isoler le sel de diazonium, mais fournit directement la méthyl-2 pyridopyrrolotriazine (15). La dihydropyrazine substituée en position 6 (16) est directement accessible par cyclisation du chlorhydrate (5) avec l'acétone. La base libre, la dihydro-5,6 pyrazine (17) est libérée en milieu alcalin. L'analyse des spectres de RMN de ces dérivés est réalisable au premier ordre et permet l'attribution de tous les signaux.

N°		δ	H heter	ocyclique	es	δ autres protons	Constantes de couplage	
	H-3	H-4	H-6	H-7	H-8	H-9		vo upluge
7	7.22	7.88	_	6.80	7.30	8.20	$CH_3 = 2.60$	
8	7.11	7.48		6.63	6.96	8.00	$CH_3 = 2.50$; $NH = 11.16$	
9	7.00	7.66		6.56	6.65	7.95	$CH_3 = 2.33$	
10	7.05	7.60		6.56	6.90	8.00	$CH_3 = 2.40$; $NH-NH_2 = 3.57$	
11	7.30	8.07	8.78	6.85	6.93	8.23	$CH_3 = 2.60$	$J_{\text{H9-H6}} = 0.9 \text{ Hz}$ $J_{\text{H9-H7}} = 1.5 \text{ Hz}$ $J_{\text{H7-H8}} = 3.6 \text{ Hz}$ $J_{\text{H9-H8}} = 2.7 \text{ Hz}$
12	7.43	8.30	9.30	7.11	7.53	8.56	$CH_3 = 2.43$; $NH^+ = 8.76$	119-110
13	7.40	8.27	9.20	7.11	7.60	8.58	$CH_3 = 2.50$; $NH^+ = 9.00$	
14	7.55	8.26	9.00	7.08	7.48		$CHO = 11.02$; $CH_3 = 2.66$	$J_{\rm H8-H7} = 4.20 \rm Hz$
15	7.48	8.55		7.11	7.36	8.21	$CH_3 = 2.66$	
16	7.00	7.43		6.26	6.08	7.83	$CH_3 = 2.50; (CH_3)_2 = 1.50$ $NH_2^+ = 8.11$	
17	6.70	6.95		6.10	5.88	7.33	$CH_3 = 2.33; (CH_3)_2 = 1.41$ NH = 5.88	$J_{H8-H9} = 3 \text{ Hz}$ $J_{H9-H7} = 1.5 \text{ Hz}$ $J_{J7-H8} = 3 \text{ Hz}$

TABLEAU II. Paramètres RMN Relatifs aux Dérivés de la Méthylpyridopyrrolopyrazine

Partie Experimentale

Les points de fusion sont pris au bloc Maquenne. Les spectres infrarouges (IR) sont enregistrés sur Perkin Elmer 257 G (KBr). Les spectres de RMN ont été enregistrés à 90 MHz, en solution dans le DMSO- d_6 , sur un spectromètre Varian EM 390. Les déplacements chimiques (δ) sont exprimés en ppm par rapport au tétraméthylsilane utilisé comme référence interne. Les constantes de couplages sont exprimées en Hertz.

Méthyl-6 nitro-3 (pyrrolyl-1)-2 pyridine (3)—On chauffe au reflux pendant 2 h une solution de 25 g (0,16 mol) d'amino-2 méthyl-6 nitro-3 pyridine (2) et 20,16 g (0,16 mol) de diméthoxytétrahydrofuranne dans $200 \,\mathrm{cm}^3$ d'acide acétique. L'acide acétique est évaporé sous pression réduite puis le résidu est agité dans $500 \,\mathrm{cm}^3$ d'eau pendant 2 h. Le précipité est essoré, lavé avec $100 \,\mathrm{cm}^3$ d'hydroxyde de sodium à 2% puis à l'eau, séché et recristallisé dans l'éther éthylique. Cristaux marrons, $F = 60 \,^{\circ}\mathrm{C}$, $p = 26 \,\mathrm{g}$. Rendement: 80%. IR $v_{\mathrm{max}}^{\mathrm{KBr}} \,\mathrm{cm}^{-1}$: 1605, 1595, 1480, 1350, 1295, 1080, 845, 810 et 745. Anal. Calc. pour $C_{10}H_{9}N_{3}O_{2}$: C, 59, 10; C, 10

Amino-3 méthyl-6 (pyrrolyl-1)-2 pyridine (4)—Une suspension de 15 g (0,073 mol) de méthyl-6 nitro-3 (pyrrolyl-1)-2 pyridine (3) et de 7 g de Nickel de Raney dans $700 \,\mathrm{cm}^3$ d'éthanol absolu est chauffée 10 min au reflux. $35 \,\mathrm{cm}^3$ d'hydrazine hydratée sont additionnés goutte à goutte en 2 h et le reflux est maintenu 4 h. Après filtration du Nickel de Raney, l'éthanol est éliminé sous vide et le résidu est recristallisé dans l'éther éthylique-éther de pétrole (5:5). Poudre beige, $F = 48 \,^{\circ}\text{C}$, $p = 8 \,\mathrm{g}$. Rendement: 63%. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 3300 et 1610 (NH₂). Anal. Calc. pour $C_{10}H_{11}N_3$: C, 69,34; H, 6,40; N, 24,26. Trouvé: C, 69,40; H, 6,36; N, 24,20.

Chlorure de Méthyl-6 (pyridyl-1)-2 pyridinyl-3 ammonium (5)—Dans une solution de 7 g (0,040 mol) de méthyl-6 amino-3 (pyrrolyl-1)-2 pyridine (4), dans $100 \,\mathrm{cm}^3$ d'éther éthylique anhydre, on fait passer pendant 5 min un courant d'acide chlorhydrique gazeux. Le précipité formé est essoré, lavé avec $100 \,\mathrm{cm}^3$ d'éther éthylique anhydre, séché et recristallisé dans l'éthanol. $F = 140 \,^{\circ}\mathrm{C}$ (dec.), $p = 6 \,\mathrm{g}$. Rendement: $68 \,^{\circ}\!_{0}$. IR $v_{\text{max}}^{\text{KBr}} \,\mathrm{cm}^{-1}$: bandes principales à 3300, 3160, 2600 et 1610. Anal. Calc. pour $C_{10}H_{12}\text{ClN}_3$: C, 57,29; H, 5,72; Cl, 16,92. Trouvé: C, 57,31; H, 5,81; Cl, 16,84.

Hydroxy-3 méthyl-6 (pyrrolyl-1)-2 pyridine (6)—On porte au reflux pendant 3 h une solution de 15 g (0,120 mol) d'amino-2 hydroxy-3 méthyl-6 pyridine (1) et 15,12 g (0,120 mol) de diméthoxytétrahydrofuranne dans $150 \,\mathrm{cm}^3$ d'acide acétique. L'acide acétique est évaporé sous pression réduite, le résidu est agité dans $200 \,\mathrm{cm}^3$ puis extrait par $500 \,\mathrm{cm}^3$ d'éther éthylique. La solution éthérée est séchée sur sulfate de sodium, filtrée et concentrée sous vide. Le précipité est recristallisé dans un mélange éther éthylique—hexane (3:2). Cristaux en étoiles jaunes. $F = 108 \,^{\circ}\mathrm{C}$, $p = 8 \,\mathrm{g}$. Rendement: $38 \,^{\circ}\!_{0}$. IR $\nu_{\mathrm{max}}^{\mathrm{KBr}} \,\mathrm{cm}^{-1}$: 3380 (OH). Anal. Calc. pour $C_{10}H_{10}N_{2}O$: C, 68,95; H, 5,79; N, 16,08. Trouvé: C, 69,00; H, 5,83; N, 15,96.

Méthyl-2 oxo-6 6H-pyrido[3,2-b]pyrrolo[1,2-d]oxazine-1,4 (7)—On porte à reflux pendant 1 h, dans 60 cm³ de toluène, 2 g (0,011 mol) d'hydroxy-3 méthyl-6 (pyrrolyl-1)-2 pyridine (6) en présence de 10 cm³ de phosgène à 20% en solution toluénique. Après refoidissement, le précipité est essoré, lavé à l'éther éthylique, séché et recristallisé dans

l'acétonitrile. Cristaux blancs, F = 231 °C, p = 1,2 g. Rendement: 54%. IR v_{max}^{KBr} cm⁻¹: 1735 (C=O). Anal. Calc. pour $C_{11}H_8N_2O_2$: C, 65,99; H, 4,03; N, 13,99. Trouvé: C, 65,78; H, 4,13; N, 14,06.

Dihydro-5,6 oxo-6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (8)—Méthode a: On porte à reflux pendant 1 h, dans 80 cm³ de toluène, 4 g (0,023 mol) d'amino-3 méthyl-6 (pyrrolyl-1)-2 pyridine (4) en présence de 10 cm^3 de phosgène à 20% en solution toluénique. Après refroidissement, le précipité est essoré, lavé à l'éther éthylique, séché et recristallisé dans l'acétonitrile. Poudre blanche, $F = 258 \,^{\circ}\text{C}$, $p = 2,7 \,\text{g}$. Rendement: 59%. IR $v_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3120 (NH), 1655 (C=O). Anal. Calc. pour $C_{11}H_9N_3O$: C, 66,32; H, 4,55; N, 21,10. Trouvé: C, 66,40; H, 4,57; N, 21,12.

Méthode b: On chauffe à $100\,^{\circ}\text{C}$ pendant $20\,\text{min}$ sans solvant un mélange de $8\,\text{g}$ (0,13 mol) d'urée et de $2\,\text{g}$ (0,0099 mol) de méthyl-2 oxo-6 6H-pyrido [3,2-b]pyrrolo[1,2-d]oxazine-1,4 (7). Après refroidissement, le mélange réactionnel est trituré dans un mélange eau glace et le précipité formé est essoré, lavé abondamment à l'eau, séché et recristallisé dans l'acétonitrile, $F = 258\,^{\circ}\text{C}$, $p = 0.7\,\text{g}$. Rendement: 38%. Le spectre IR est identique à celui du dérivé obtenu par la méthode a.

Chloro-6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (9)—On chauffe à reflux dans 35 cm³ d'oxychlorure de phosphore et 0,5 cm³ de pyridine 2 g (0,010 mol) de dihydro-5,6 oxo-6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (8) pendant 1 h. L'oxychlorure de phosphore est évaporé et le résidu repris dans une solution d'hydroxyde de sodium à 5%, agité 1 h puis extrait par 200 cm³ d'acétate d'éthyle. L'acétate d'éthyle est séché, filtré et concentré sous pression réduite. Le résidu est recristallisé dans l'acétone. Cristaux blancs, F = 150 °C, p = 1,3 g. Rendement: 59%. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: bandes principales à 1605, 1540, 1345, 1280, 1125, 945, 805 et 740. Anal. Calc. pour $C_{11}H_8\text{ClN}_3$: C, 60,70; H, 3,70; Cl, 16,28. Trouvé: C, 60,80; H, 3,72; Cl, 16,31.

Hydrazino-6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (10)—On porte à reflux pendant 4 h dans 40 cm^3 d'hydrazine hydratée et 5 cm^3 d'éthanol 1,5 g (0,0081 mol) de chloro-6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (9). Après refroidissement, la solution est versée dans 150 cm^3 d'eau et agitée 1 h. Le précipité formé est essoré, séché et recristallisé dans l'éthanol. Cristaux jaunes, $F = 205 \,^{\circ}\text{C}$, $p = 0.9 \,^{\circ}\text{g}$. Rendement: 52%. IR $v_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3430, 3260 et 1620 (NH, NH₂). Anal. Calc. pour $C_{11}H_{11}N_5$: C, 61,95; H, 5,20; N, 32,85. Trouvé: C, 61,81; H, 5,26; N, 32,84.

Méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (11) — Méthode a: Une solution de 1,4 g (0,0064 mol) de chloro-6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (9) dans 250 cm³ d'éthanol absolu et 2 g de charbon palladié à 10% est chauffée à 100 °C sous 50 kg d'hydrogène pendant 1 h. Le mélange est filtré, évaporé sous pression réduite et le résidu est recristallisé dans l'éther éthylique. Cristaux jaunes, F = 128 °C, p = 0.6 g. Rendement: 57%. IR ν_{max}^{KBr} cm⁻¹: bandes principales à 1595, 1530, 1480, 1425, 1310, 1270, 1160, 1065, 935, 790 et 735. *Anal.* Calc. pour $C_{11}H_9N_3$: C, 72,11; H, 4,95; N, 22,94. Trouvé: C, 72,11; H, 4,96; N, 22,95.

Méthode b: On porte à reflux dans $30 \,\mathrm{cm}^3$ d'acide formique, $2 \,\mathrm{g}$ (0,011 mol) d'amino-3 méthyl-6 (pyrrolyl-1)-2 pyridine (4) pendant 2 h. Après refroidissement, la solution est versée dans $60 \,\mathrm{cm}^3$ d'une solution d'hydroxyde de sodium à 30%, puis agitée 2 h. Le précipité formé est essoré, lavé à l'eau, séché puis recristallisé dans l'éther éthylique. $F = 128 \,\mathrm{^{\circ}C}$, $p = 1,4 \,\mathrm{g}$. Rendement: 69%. Le spectre IR est identique à celui du dérivé obtenu par la méthode a.

Chlorure de $5H^+$ -Méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazinium (12)—On dissout 1 g (0,0054 mol) de méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (11) dans 70 cm³ d'éther éthylique anhydre et on fait passer un courant d'acide chlorhydique gazeux pendant 5 min. Le précipité formé est essoré, lavé à l'éther de pétrole, puis recristallisé dans l'acétonitrile. Cristaux blancs, F = 216 °C, p = 0.9 g. Rendement: 76%. IR $v_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 2700, 2560, 2400 (NH $^+$, Cl $^-$). Bandes principales à 1620, 1570, 1415, 1350, 1250, 1115, 1055, 920, 840 et 765. *Anal.* Calc. pour $C_{11}H_{10}ClN_3$: C, 60,15; H, 4,55; Cl, 16,15; N, 19,13. Trouvé: C, 60,21; H, 4,59; Cl, 16,12; N, 19,10.

Bromure de $5H^+$ -Méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazinium (13)—On agite 30 min 1 g (0,0054 mol) de méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (11) dans 50 cm³ d'éthanol et 15 cm³ d'acide bromhydrique à 40% dans l'acide acétique. Le précipité formé est essoré, lavé avec de l'éther éthylique, séché et recristallisé dans l'acétonitrile. Cristaux jaunes foncés. $F = 270 \,^{\circ}\text{C}$ (dec.), $p = 1,1 \,\text{g}$. Rendement: 77%. IR $v_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 2900, 2600 et 2400 (NH $^+$, Br $^-$). Bandes principales à 1620, 1595, 1470, 1345, 1215, 1165, 1030, 915, 840 et 745. *Anal.* Calc. pour $C_{11}H_{10}BrN_3$: C, 50.02; H, 3,81; Br, 30,25; N, 15,91. Trouvé: C, 50,07; H, 3,81; Br, 30,22; N, 15,84.

Formyl-9 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (14)—2 g (0,0109 mol) de méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (11) en solution dans $15\,\mathrm{cm}^3$ de diméthylformamide sont ajoutés à température ambiante en une seule fois à un complexe préalablement préparé à 0 °C à partir de 0,79 g (0,0109 mol) de diméthylformamide et de 1,60 g (0,0109 mol) d'oxychlorure de phosphore, puis on porte le mélange réactionnel à $100\,^{\circ}\mathrm{C}$ pendant 1 h. Après refroidissement, le mélange est versé sur 100 g de glace, agité puis alcalinisé avec une solution d'hydroxyde de sodium 6 N. Le précipité formé est essoré, lavé à l'eau, séché et recristallisé dans l'acétonitrile. Cristaux jaunes, $F = 230\,^{\circ}\mathrm{C}$, p = 1,1 g. Rendement: 47%. IR $\nu_{\max}^{\mathrm{KBr}}\mathrm{cm}^{-1}$: $1640\,^{\circ}\mathrm{C} = 0$). Anal. Calc. pour $\mathrm{C}_{12}\mathrm{H}_9\mathrm{N}_3\mathrm{O}$: C, 68,23; H, 4,30; N, 19,90. Trouvé: C, 68,31; H, 4,22; N, 19,84.

Méthyl-2 pyrido[2,3-e]pyrrolo[2,1-c]triazine-1,2,4 (15)—Une solution de 2 g (0,011 mol) d'amino-3 méthyl-6 (pyrrolyl-1)-2 pyridine (4), dans 50 cm³ d'acide acétique à 10% dans 1'eau, est additionnée, sous agitation par petites portions, de 1,51 g (0,022 mol) de nitrite de sodium. Après 1 h d'agitation à température ambiante, le précipité est essoré, lavé avec 200 cm³ d'eau, séché et sublimé à 150 °C sous 0,05 mmHg. Cristaux rouges, F = 148 °C, p = 1,3 g. Rendement: 64%. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: bandes principales à 1590, 1485, 1310, 1245, 1115, 1055, 830 et 750. *Anal.* Calc. pour $C_{10}H_8N_4$: C, 65,20; H, 4,38; N, 30,42. Trouvé: C, 65,17; H, 4,32; N, 30,50.

Chlorure de $5H^+$ -Dihydro-5,6 diméthyl-6,6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazinium (16)—On porte a reflux pendant 1 h 30 min, 1,4 g (0,0066 mol) de chlorure d'ammonium (5) dans $60 \,\mathrm{cm}^3$ d'acétone. Après refroidissement, le précipité formé est essoré et recristallisé dans l'éthanol. Cristaux jaunes, $F=168\,^{\circ}\mathrm{C}$, $p=0,7\,\mathrm{g}$. Rendement: 42%. IR $v_{\mathrm{max}}^{\mathrm{KBr}}\mathrm{cm}^{-1}$: 3200 (NH), 2680 et 2480 (NH⁺). Bandes principales à 1600, 1580, 1410, 1330, 1260, 1170, 1045, 950, 845 et 715. Anal. Calc. pour $C_{13}H_{16}\mathrm{ClN}_3$: C, 62,51; H, 6,45; Cl, 14,19. Trouvé: C, 62,48; H, 6,51; Cl, 14,23.

Dihydro-5,6 diméthyl-6,6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazine (17)—0,5 g (0,0040 mol) de chlorure de $5H^+$ -dihydro-5,6 diméthyl-6,6 méthyl-2 pyrido[3,2-e]pyrrolo[1,2-a]pyrazinium (16) sont agités à 60 °C pendant 1 h dans $70 \,\mathrm{cm}^3$ d'une solution saturée d'hydrogénocarbonate de sodium. Après refroidissement, la solution est extraite par $150 \,\mathrm{cm}^3$ d'éther éthylique. La phase éthérée est lavée à l'eau, séchée sur sulfate de magnésium, filtrée, puis concentrée sous pression réduite. Le résidu est recristallisé dans un mélange d'éther éthylique et d'hexane (3/2). Cristaux roses. $F = 52 \,^{\circ}$ C, $p = 0,35 \,\mathrm{g}$. Rendement: 40%. IR $v_{\mathrm{max}}^{\mathrm{KBr}} \,\mathrm{cm}^{-1}$: 3320 (NH), bandes principales à 1600, 1580, 1450, 1340, 1235, 1140, 1050, 915, 800 et 730. Anal. Calc. pour $C_{13}H_{15}N_3$: C, 73,21; H, 7,09; N, 19,70. Trouvé: C, 73,19; H, 7,04; N, 19,72.

Bibliographie

- 1) a) S. Rault, M. Cugnon de Sévricourt, N. H. Dung et M. Robba, *Tetrahedron Lett.*, 1979, 643; b) S. Rault, M. Cugnon de Sévricourt et M. Robba, *Heterocycles*, 12, 1009 (1979); c) *Idem*, *ibid.*, 14, 651 (1980); d) *Idem*, J. *Heterocycl. Chem.*, 18, 739 (1981).
- 2) M. Cugnon de Sévricourt, H. El Khashef, S. Rault et M. Robba, Synthesis, 9, 710 (1981).
- 3) a) J. C. Lancelot, J. M. Gazengel, S. Rault et M. Robba, Chem. Pharm. Bull., 30, 1674 (1982); b) Idem, ibid., 31, 45 (1983); c) Idem, ibid., 1985, (accepté).
- 4) J. C. Lancelot, S. Rault, N. H. Dung et M. Robba, Chem. Pharm. Bull., 31, 3160 (1983).
- 5) J. C. Lancelot, D. Ladurée et M. Robba, Chem. Pharm. Bull., 1985, (accepté).
- 6) J. C. Lancelot, D. Ladurée, H. El Khashef et M. Robba, J. Heterocycl., 1985, (accepté).
- 7) E. D. Parker et W. Shive, J. Am. Chem. Soc., 69, 63 (1974); idem, ibid., 74, 3828 (1952).
- 8) a) N. Clauson-Kaas et Z. Tyle, Acta Chem. Scand., 6, 667 (1952); b) N. Elming et N. Clauson-Kaas, ibid., 6, 867 (1952).
- 9) W. C. Antony, J. Org. Chem., 25, 2049 (1960).
- 10) A. Vilsmeier et A. Haack, Chem. Ber., 60, 119 (1927).