Communications to the Editor

Chem. Pharm. Bull. 33(10)4618—4620(1985)

A NEW SOLID-PHASE SYNTHESIS OF RIBOOLIGONUCLEOTIDES USING THE 3'-PHOSPHORO-p-ANISIDATE PROTECTING GROUP FOR STEPWISE SYNTHESIS IN THE 3'-DIRECTION

Shigenori Iwai, Miyuki Asaka, Hideo Inoue and Eiko Ohtsuka*
Faculty of Pharmaceutical Sciences, Hokkaido University,
Kita-12, Nishi-6, Kita-ku, Sapporo 060, Japan

A nonaribonucleotide CAGGUAAGU has been synthesized by the phosphotriester solid-phase method. The 5'-linked $2'-\underline{O}$ -tetrahydrofuranyl- \underline{N} -benzoylcytidine $3'-\underline{O}$ -(\underline{O} -chlorophenyl) phosphate was used as the starting material and the chain was elongated in the 3'-direction by removal of the phosphoro- \underline{p} -anisidate group using isoamyl nitrite under neutral conditions.

KEYWORDS — nonaribooligonucleotide; splice site RNA; phosphoro-p-anisidate method; isoamyl nitrite

Solid-phase procedures for the synthesis of deoxyribooligonucleotides have been facilitated by improvements in the phosphodiester activation method and the introduction of the phosphoramidite method. 1) In the ribo-series, the phosphotriester solid-phase synthesis has been investigated only to a limited extent²⁾ due to difficulties encountered when using combinations of protecting groups for the 2'- and 5'-hydroxyl groups. We have previously reported a synthesis of ribooligonucleotides on a polystyrene support in the 5'-direction by selective removal of the 5'-dimethoxytrityl group with zinc bromide³⁾ in the presence of a 2'-tetrahydrofuranyl protecting group. 2c) In this communication we describe a solid-phase synthesis of ribooligonucleotides involving elongation of a chain in the 3'direction by selective removal of the 3'-phosphoro-p-anisidate protecting group with isoamyl nitrite under neutral conditions. In this approach, the dedimethoxytritylation to yield the starting material (1) with zinc bromide can be performed in solution and 1 can be purified even if the reaction with zinc bromide does not go to completion. As shown in Chart 1, the 3'-phosphodiester end of the growing chain was activated with 1-(mesitylenesulfonyl)-3-nitro-1,2,4-triazole (MSNT). The key intermediates \underline{N} -protected-2'- \underline{O} -tetrahydrofuranyl-nucleoside 3'- \underline{O} -(p-chlorophenyl) phosphoro-p-anisidates(1) were prepared by phosphorylation of \underline{N} protected 5'-O-dimethoxytrityl-2'-O-tetrahydrofuranylnucleosides⁵⁾ with ochlorophenyl $\underline{\text{N-p-methoxyphenylchlorophosphoramidate}}^6)$ followed by treatment with zinc bromide. 7) The starting nucleotide (1b) was joined to 1% cross-linked aminomethylene polystyrene via the activated succinyl derivative of $2'-\underline{0}$ -

tetrahydrofuranyl- \underline{N} -benzoylcytidine 3'-(\underline{o} -chlorophenyl) phosphoro- \underline{p} -anisidate (2b) using conditions described for the reaction with \underline{N} -benzoyldeoxyadenosine 3'- \underline{O} -(\underline{o} -chlorophenyl) phosphoro- \underline{p} -anisidate.⁸⁾ The unchanged amino groups on the support were blocked by acetylation with acetic anhydride-pyridine(2:3, v/v). The content of the nucleotide was estimated by formation of a picrate ⁹⁾ and 0.09 mmol/g of the amino groups was found to have reacted in a yield of 83%.

The nucleotide resin $(3b)(5~\mu\text{mol})$ was used for the synthesis of a nonanucleotide CAGGUAAGU. The procedures for removal of the anisidate with isoamyl nitrate to give 4b and condensation of mononucleotides (20 μ mol each) to yield, e.g., 5 are summarized in Table I. MSNT was used as the condensing reagent and unreacted phosphodiesters were blocked by methylation. $2^{1}, 3^{1}-\underline{0}-Ethoxymethylideneuridine^{10}$ was used for the last condensation.

Deblocking of the linked nonamer (6, n=7) was performed by hydrolysis with 1,1,3,3,-tetramethylguanidinium pyridine-2-aldoximate⁴⁾ and by treatment with concentrated ammonia. The tetrahydrofuranyl groups were removed at pH 2.0 using conditions described for the solution-phase synthesis.⁷⁾ The completely deprotected nonanucleotide (7) was isolated by gel filtration on Sephadex G-25 and chromatography on DEAE-TOYOPEARL 650S. The product eluted in the last peak was fractionated by high pressure liquid chromatography on C-18 silica gel (Nucleosil 5C₁₈) in a yield of ca. 1%, 3.7 A₂₆₀ units. The purity and sequence were analyzed by high pressure anion-exchange chromatography on TSK gel DEAE-2SW and by mobility shift analysis.¹¹⁾

Thus the ribononanucleotide containing the 5'-consensus splice junction¹²⁾ was synthesized on a polymer support in the 3'-direction. Analogs of this oligonucleotide can be used for studies of splicing mechanisms in messenger RNAs. The method can be applied to the synthesis of ribooligonucleotide with modifications at the 3'-end by using 3'-substituted nucleosides at the last condensation.

Chart 1

12

13

Step	Solvent or reagent	Amount	Operation	Number of
		(ml)	(time)	operations
1	Pyridine	2	wash	2
2	Isoamyl nitrite	0.5		
	Pyridine-acetic acid	2	2.5h a)	1
	(1:1, v/v)			
3	Pyridine-acetic acid	2	wash	2
4	0.5 M TAA ^{b)} in DMF	2	wash	3
5	Dichloromethane	2	wash	3
6	Ether	2	wash	3
7	THF	2	wash	3
8	Pyridine	2	wash	3
9	Pyridine	0.5	coevaporation	n 3
10	Nucleotide in Pyridine	15 mg in 0.5	ml coevaporation	n 1
11	MSNT in pyridine	20 mg in 0.5	ml 30 min ^a)	1

Table I. Procedure for the Synthesis

10 % MeOH in pyridine

Pyridine

MSNT

REFERENCES AND NOTES

1) For a review: E. Ohtsuka, M. Ikehara and D. Soll, <u>Nucleic Acids Res.</u>, 10, 6553 (1982).

2

0.5

20 mg

wash 10 min a)

1

- 2) a) E. Ohtsuka, H. Takashima and M. Ikehara, Tetrahedron Lett., 22, 765 (1981);
 - b) G. A. van der Marel, G. Wille, and J. H. van Boom, <u>Recl. Trav. Chim. Pays-Bas</u>, 101, 241 (1982); c) E. Ohtsuka, J. Matsugi, T. Doi and M. Ikehara, Chem. Pharm. <u>Bull.</u>, in press.
- 3) R. Kierzek, H. Ito, R. Blatt and K. Itakura, Tetrahedron Lett., 22, 376 (1981).
- 4) C. B. Reese, R. C. Titmus and L. Yau, Tetrahedron Lett., 1978, 2727.
- 5) E. Ohtsuka, M. Okubo, A. Yamane and M. Ikehara, <u>Chem. Pharm. Bull.</u>, **31**, 1910 (1983).
- 6) E. Ohtsuka, Y. Taniyama, R. Marumoto, H. Sato, H. Hirosaki and M. Ikehara, Nucleic Acids Res., 10, 2597 (1982).
- 7) E. Ohtsuka, A. Yamane and M. Ikehara, Nucleic Acids Res., 11, 1325 (1983).
- 8) E. Ohtsuka, Y. Taniyama, S. Iwai, T. Yoshida and M. Ikehara, Chem. Pharm. Bull., 32, 85 (1984).
- 9) H. Ito, Y. Ike, S. Ikuta and K. Itakura, Nucleic Acids Res., 10, 1755 (1982).
- 10) J. Smrt and S. Chladek, Collect Czech. Chem. Commun., 31, 2978 (1966).
- 11) F. Sanger, J. E. Donelson, A. R. Coulson, H. Kössel and D. Fischer, <u>Proc. Natl.</u>
 <u>Acad. Sci. U.S.A.</u>, **70**, 1209 (1973).
- 12) S. M. Mount, <u>Nucleic Acid Res.</u>, 10, 459 (1982).

(Received July 25, 1985)

a) at 30°C, b) Triethylammonium acetate.