Communications to the Editor

Chem. Pharm. Bull. 33(10)4625-4628(1985)

SYNTHESIS OF 11-DEOXO-11-METHYLENE-PROSTAGLANDIN D2 AND ITS DERIVATIVES1)

Yasuhiro Torisawa, Toyofumi Yamaguchi, ²⁾ Shinji Sakata, ²⁾ and Shiro Ikegami *

Faculty of Pharmaceutical Sciences, Teikyo University,

Sagamiko, Kanagawa 199-01, Japan

New and stable analogues of prostaglandin D $_2$, ll-deoxo-ll-methylene-PGD $_2$ (4) and its 9-epi- and 9-deoxy-derivatives (5,6) were synthesized from a suitably protected prostaglandin F $_{2\alpha}$ (PGF $_{2\alpha}$) (7). KEYWORDS — PGD $_2$; ll-deoxo-ll-methylene-PGD $_2$; ll-deoxo-ll-methylene-PGD $_2$; ll-deoxo-ll-methylene-PGD $_2$; PGD $_2$ stable analogue

Currently, increasing interest has been focused on the unique features of prostaglandin D₂ (PGD₂, ½) and related compounds because of their inhibition of platelet aggregation, ³⁾ antineoplastic activity ⁴⁾ and subtle physiological properties. ⁵⁾ In spite of these interesting biological profiles, there are relatively few reports concerning the synthesis of their analogues. ^{3,6)} In 1983, Bundy and coworkers ³⁾ reported the synthesis of some PGD derivatives and their inhibition of platelet aggregation. 9-epi-PGD₂ (½) and 9-deoxy-PGD₂ (¾) were found to be more potent than PGD₂ itself. In these analogues, however, the inherent instability of PGD₂ is left unsettled.

On the other hand, in the E series of prostaglandin, its methylene analogue, $^{7)}$ in which the carbonyl oxygen in the 9-position in PGE₂ is replaced by a methylene group, is one of the most promising analogues. Accordingly, we planned the synthesis of some PGD₂ analogues and describe herein the synthesis of 11-deoxo-11-methylene-PGD₂ (4) and its 9-epi- and 9-deoxy- derivatives (5 , 6) with some preliminary biological evaluations.

The common intermediate for the synthesis of these compounds was the suitably protected prostaglandin $F_{2\alpha}$ (PGF $_{2\alpha}$) (7) which could be easily prepared from the lactone (8) in the usual way. Protection of (7) gave the silyl ether (9) ($^{\frac{t}{2}}$ Bu(Ph) $_{2}$ SiCl, imidazole, DMF, 92% yield), which was then converted to the ll-

l: X=0 4: X=CH₂

2: X=0 5: X=CH₂

3: X=0 6: X=CH₂

(^tBu)Ph₂Si0 COOMe ÖsiPh₂(^tBu) ÖSiPh₂(^tBu)

7: R₁=H, R₂=THP 9: R₁=SiPh₂(^tBu), R₂=THP 10: R₁=SiPh₂(^tBu), R₂=H 17: R₁=C(S)OPh, R₂=THP

<u>ll</u>: X=0

12: X=CH₂

 $13: R_1 = Ac, R_2 = THP$

 $\frac{14}{2}$: R₁=Ac, R₂=H

СООМе ÖSiPh₂(^tBu)

15: X=0

16: X=CH₂

`C00Me ŌSiPh₂(^tBu)

18: R=THP

19: R=H

THP=tetrahydropyran-2-y1

alcohol (10) (AcOH-H₂O-THF, 70°C, 78% yield). PCC-Oxidation of 10 gave the PGD₂ derivative (11), 9) which was purified by column chromatography over SiO₂ (97.5% yield).

Crucial methylenation of 11 was effected by the addition of $2n-CH_2Br_2-TiCl_4$ reagent to a stirred solution of 11 in CH_2Cl_2 at room temperature. After the usual work-up, purification by SiO_2 column chromatography gave the pure methylene compound $(12)^{11}$ as a yellow oil (54.8% yield).

Deprotection of 12 (${}^{\rm D}{\rm Bu}_4{\rm N}^+{\rm F}^-$, THF, 25°C, 68% yield) followed by ester hydrolysis (KOH, MeOH, H $_2$ O, 60% yield) furnished the title compound (4) 12) as a colorless oil.

For the synthesis of the 9-epi-PGD₂ derivative (5), the inversion of the 9 α -alcohol in 7 to the β -configuration was effectively carried out using a method we developed recently. The mesylation of 7 (Et₃N, MeSO₂Cl, CH₂Cl₂, 0°C) followed by reaction with CsOAc and 18-crown-6 in refluxing benzene 13) afforded the inverted acetate (13) in 74% yield from 7. Cleavage of the THP ether gave the corresponding alcohol (14) in 80% yield (AcOH-H₂O-THF, 70°C), which was subsequently oxidized to the ketone (15) 14) (PCC, CH₂Cl₂, quantitative yield). Methylenation of 15 was conducted as described above to give 16 15) in 47% yield. Sequential deprotection of 16 provided the second analogue, 11-deoxy-11-methylene-9-epi-PGD₂ (5), 16) in 27% yield from 16 as a colorless oil.

For the synthesis of the third target (§), the 9α -alcohol (7) was converted to the 9α -thionocarbonate (17) (PhOC(S)Cl, DMAP, CH₃CN), which was then treated with excess ${}^{1}_{B}Bu_{3}SnH$ (AIBN, toluene, reflux, 0.5 h) to give the 9-deoxy compound (18) ${}^{17}_{}^{}$ in 73% yield from 7. Through the same sequence of reactions (9+4) shown above, 18 was successfully transformed to 9-deoxy-ll-deoxo-ll-methylene-PGD₂ (§) ${}^{18}_{}^{}$ via the alcohol (19) in 37% overall yield from 18.

To our disappointment, none of the compounds described here potently inhibited platelet aggregation or distinctively inhibited L5178Y cell growth in concentrations up to $50\mu g/ml.^{19}$ However, l1-deoxo-l1-methylene-PGD₂ (4) could be promising for the production of antibody having a specific affinity to PGD₂ or PGJ₂. This is currently under investigation in this course.

ACKNOWLEDGEMENT We thank Misses. Keiko Takahashi, Miyuki Nakamura, and Junko Takeda for their $^1\mathrm{H-NMR}$ and MS spectral measurements. Partial financial support of this research by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and by The Naito Foundation is gratefully acknowledged.

REFERENCES AND NOTES

- 1) This paper is dedicated to Professor Shun-ichi Yamada on the occasion of his 70th birthday.
- 2) Visiting scientist in 1984 from Yamasa Shoyu Ltd., Choshi, Chiba, Japan.
- 3) G.L.Bundy, D.R.Morton, D.C.Peterson, E.E.Nishizawa, and W.L.Miller, J. Med. Chem., 26, 790 (1983).
- 4) M.Fukushima, T.Kato, R.Ueda, K.Ota, S.Narumiya, and O.Hayaishi, <u>Biochem.</u> Biophys. Res. Commun., 105, 956 (1982).
- 5) R.Ueno, K.Honda, S.Inoue, and O.Hayaishi, <u>Proc. Natl. Acad. Sci. U.S.A.</u>, 80, 1735 (1983).
- 6) For example, see M.Hayashi and T.Tanouchi, <u>J. Org. Chem.</u>, <u>38</u>, 2115 (1973); S.M.Ali, M.A.W.Finch, S.M.Roberts and R.F.Newton, <u>J. Chem. Soc.</u>, <u>Chem.</u> Commun., <u>1979</u>, 679.
- 7) For example, see F.A.Kimball, G.L.Bundy, A.Roberts, and J.R.Weeks, Prostaglandins, 17, 657 (1979).
- i) DIBALH, toluene, -78°C, ii) Ph₃PCH₂(CH₂)₃COOH Br⁻, t-BuOK, benzene, r.t., iii) CH₂N₂, ether, 75% overall yield.
- 9) $11: IR, v_{max} \text{ (neat) cm}^{-1}: 2920, 1735, 1105. \\ ^{1}H-NMR (CDCl_{3}) \delta (ppm): 7.79-7.22$ (m, 20H), 5.68, 5.06 (m, 4H), 4.44 (m, 1H), 4.11 (q, 1H, J=7 Hz), 3.61 (s, 3H), 2.79 (dd, 1H, J=7 & 12 Hz). MS (m/z): 785 (M⁺-^tBu).
- 10) L.Lombardo, Tetrahedron Lett., 23, 4293 (1982).
- 11) 12: ${}^{1}\text{H-NMR}(\text{CDCl}_{3})$ $\delta(\text{ppm})$: 7.79-7.22 (m, 20H), 5.68-5.03 (m, 4H), 4.78, 4.70 (each s, 2H, methylene), 4.28-4.06 (m, 2H), 3.64 (s, 3H), 2.98 (m, 1H).
- 12) 4: IR v_{max} (neat) cm⁻¹: 3380, 2930, 1705. ¹H-NMR(CDCl₃) δ (ppm): 5.63-5.37 (m, 4H), 4.98, 4.85 (each s, 2H, methylene), 4.27 (t, 1H, J=4 Hz), 4.20 (q, 1H, J=7 Hz), 2.87 (dd, 1H, J=7 & 12 Hz).
- 13) Y.Torisawa, H.Okabe, and S.Ikegami, Chem. Lett., 1984, 1555.
- 14) $15: IR v_{max}$ (neat) cm⁻¹: 2930, 1935, 1240.
- 15) 16: $^{1}H-NMR(CDCl_{3})$ $\delta(ppm)$: 5.51-5.17 (m, 4H), 4.83, 4.59 (each s, 2H).
- 16) $\tilde{5}$: IR v_{max} (neat) cm⁻¹: 3350, 2930, 1705. $^{1}\text{H-NMR}$ (CDCl $_{3}$) δ (ppm): 5.63-5.41 (m, 4H), 4.92, 4.78 (each s, 2H), 3.94 (q, 1H, J=8 Hz), 2.65 (m, 1H).
- 17) $18: IR v_{max}$ (neat) $cm^{-1}: 2920, 1730, 1105.$
- 18) 6: IR v_{max} (neat) cm⁻¹: 3350, 2930, 1705. $^{1}\text{H-NMR}(\text{CDCl}_{3})$ $\delta(\text{ppm})$: 5.59-5.35 (m, 4H), 4.88-4.73 (each s, 2H), 4.19 (q, 1H, J=8 Hz).
- 19) Biological assay was carried out by H.Machida and Y.Watanabe at Yamasa Shoyu Ltd.

(Received August 1, 1985)