Communications to the Editor

Chem. Pharm. Bull. 33(10)4637—4639(1985)

OCCURRENCE OF PIEROSIDE C, A GRAYANOTOX-9-ENE DERIVATIVE, IN PIERIS JAPONICA

Toyo Kaiya and Jinsaku Sakakibara*

Faculty of Pharmaceutical Sciences, Nagoya City University,

Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

A new diterpene glycoside, pieroside C, has been isolated together with grayanotoxin-VII and -XVIII from *Pieris japonica* D. DON(Ericaceae). Its structure was determined by chemical and spectroscopic means to be 3-O-(B-D-glucopyranosyl)-3,5,6,16-tetrahydroxygrayanotox-9-ene. This is the first report of a grayanotox-9-ene derivative occurring in nature.

KEYWORDS—*Pieris japonica*; Ericaceae; diterpene glucoside; grayanotox-9-ene; pieroside C; grayanotoxin-VII; grayanotoxin-XVIII

In previous papers we reported the isolation and characterization of two diterpene glycosides, pieroside A and B, from the leaves of *Pieris japonica* D. DON(Ericaceae). 1,2) This paper describes the structure of another glycoside isolated from this plant, pieorside C, along with two known diterpenes.

Grayanotoxin-VII(1), 3) mp 182.5-183.5°C, and grayanotoxin-XVIII(2), 4) mp 167-169°C, were isolated from the chloroform-soluble fraction of the methanol extract, and identified by spectroscopic analysis and/or comparison with the authentic sample.

Pieroside $C(3)^{5}$ was obtained from the n-butanol-soluble fraction of the methanol extract in the course of the isolation of pieroside A and B after repeated chromatography. 2) Its 13C-NMR spectrum indicated the presence of twenty-six carbons, six of which were the signals characteristic of a glucose moiety δ 104.9(d, C-1´), 77.8 and 77.7(each d, C-3 and C-5), 75.1(d, C-2), 71.7(d, C-4), and 62.7(t, C-6)].⁴⁾ Compound 3 gave a pentaacetate(3b)⁶⁾ on acetylation. Enzymatic hydrolysis of 3 by naringinase gave a genuine aglycone(3a),⁷⁾ $C_{20}^{H}_{32}O_{4}$, whose $^{1}_{H}$ -NMR and $^{13}_{C}$ -NMR spectra showed the presence of the following groups: four tertiary methyls, one of which is on a double bond; six methylenes, four methines, two of which are adjacent to an oxygen; four quaternary carbons, two of which are adjacent to an oxygen; and two quaternary olefinic carbons. From the above data and biogenetic considerations, 3a should have a grayanotoxane(A-nor-B-homo-ent-kaurane) skeleton, and no hydroxyl groups on the C-14 because of the absence of any singlets around δ 4.50 in the 1 H-NMR spectrum. $^{8)}$ Comparing the 1 H-NMR spectra of 2 and 3a, the H-l signal of 2[δ 3.13(t, J=9 Hz)) shifted downfield to δ 3.50(t, J=10 Hz) in the spectrum of 3a. From this the structure of 3a was deduced to be 3,5,6,16-tetrahydroxygrayanotox-9-ene. The anomeric proton of 3 was observed at δ 4.93(d, J=7 Hz), so it must be a ${ t B-D-glucoside}$. The glucosidation position was determined by the ${ t ^{13}C-NMR}$ spectrum.

Table I. $^{13}\text{C-NMR}$ Chemical Shifts (8) of Grayanotoxins (C $_5\text{D}_5\text{N}$)

	5 ¹¹⁾	4	6 ¹¹⁾	2	3a	3
C- 1	51.7	51.5	45.9	44.5	44.7	44.7
- 2	35.8	35.8	39.4	39.4	36.8	35.7
- 3	82.6	82.5	81.2	81.2	80.4	87.8
- 4	51.8	51.8	50.6	50.6	50.4	50.4
- 5	84.6	84.7	83.9	83.5	85.0	83.8
- 6	74.2	74.6	69.5	70.6	68.1	69.2
- 7	44.4	50.4	42.2	46.7	46.6	46.5
- 8	52.6	46.5	50.6	44.7	48.9	49.2
- 9	55.2	53.2	50.8	52.3	139.1	139.6
-10	78.1	78.2	153.0	153.0	121.2	120.9
-11*	22.6	23.3	24.6	24.1	28.8	28.7
-12*	27.1	26.6	24.8	25.8	26.4	26.2
-13	56.4	50.8	54.3	47.9	47.4	47.4
-14	79.4	36.2	81.0	36.5	48.9	48.9
-15	60.4	61.3	60.7	62.5	57.0	56.7
-16	79.7	78.2	81.2	79.5	81.1	81.4
-17	23.9	24.5	24.6	25.4	24.5	25.9
-18	23.3	23.2	23.8	24.1	24.3	24.4
-19	19.8	19.7	18.7	19.2	20.2	19.4
-20	28.3	28.3	111.9	112.2	17.8	18.5

 $[\]mbox{\scriptsize \star}$ The assignments may be reversed in each column.

The assignments of the ¹³C-NMR spectra of grayanotoxins have been reported by several investigators. ^{9,10,11)} However, no complete assignments of grayanotoxins having no hydroxyl groups on C-14 have appeared. So we tried to assign the spectra of 14-deoxygrayanotoxin-III(4)¹²⁾ and 14-deoxygrayanotoxin-II(2)(grayanotoxin-XVIII) by analogy with those of grayanotoxin-III(5) and grayanotoxin-II(6) (Table I). Due to the lack of the 14-hydroxyl group, the C-8 and C-13 of 4 and 2 shifted upfield. The assignments of the spectra of 3 and 3a were achieved by comparing them with the spectrum of 2. The downfield shift of more than 12 ppm on the C-14 of 3 and 3a would be caused by the presence of a double bond between the C-9 and -10. The C-3 signal of aglycone 3a appeared at 8 80.4, while that of glucoside 3 was observed at 8 87.8. Other carbinyl carbon signals scarcely shifted on glucosidation. Hence ß-D-glucoside bond must be attached at the C-3 of the aglycone. From the above argument, it was concluded that pieroside C(3) is 3-O-(ß-D-glucopyranosyl)-3,5,6,16-tetrahydroxy-grayanotox-9-ene. The grayanotox-9-ene derivative was the first one found in nature.

ACKNOWLEDGEMENT The authors are grateful to Mr. T. Ohki (The Bio-dynamics Research Institute) and Mr. J. Nakagami (Taisho Pharmaceutical Co. & Ltd.) for the measurement of high resolution MS and $^{13}\text{C-NMR}$ spectra.

REFERENCES AND NOTES

- 1) J. Sakakibara, T. Kaiya, and N. Shirai, Yakugaku Zasshi, 100, 540(1980).
- 2) J. Sakakibara, N. Shirai, and T. Kaiya, Phytochemistry, 20, 1744(1981).
- 3)H. Hikino, N. Shoji, S. Koriyama, T. Ohta, Y. Hikino, and T. Takemoto, Chem. Pharm. Bull., 18, 2357(1970).
- 4)J. Sakakibara, N. Shirai, T. Kaiya, and H. Nakata, Phytochemistry, 18, 135(1979). 1 H-NMR of $_2(C_5D_5N)$ $_5:1.12(3H,s)$, $_1.55(6H,s)$, $_3.13(1H,t,J=9\ Hz)$, $_3.93(1H,dd,J=2\ and\ 6\ Hz)$, $_4.21(1H,dd,J=2\ and\ 9\ Hz)$, $_5.16(2H,s,H=20)$.
- 5) Viscous syrup, $[\alpha]_D^{21.5}$ -14.46°(c=2.45, MeOH), 1 H-NMR(C_5D_5N) δ :1.08, 1.45, 1.59, 1.74(each 3H,s), 4.00-4.52(many protons), 4.93(1H,d,J=7 Hz).
- 6)Colorless powder, mp 262°C(dec.), 1 H-NMR(CDCl $_{3}$) $\delta:0.90$, 0.95, 1.39, 1.69(each 3H,s), 1.98, 2.00, 2.01, 2.07, 2.09(each 3H,s), 4.22(2H,m), 4.52(1H,d,J=7 Hz), 5.15(4H,m). MS m/z:648(M $^{+}$ -AcOH), 630, 612.
- 7) 1 H-NMR($^{\circ}$ C₅D₅N) 8:0.91, 1.30, 1.58, 1.84(each 3H,s), 3.50(1H,t,J=10 Hz), 3.83(1H, t, J=5 Hz), 4.22(1H, m). MS m/z:336.2311($^{+}$, calcd for $^{\circ}$ C₂₀H₃₂O₄, 336.2300).
- 8)H. Kakisawa, T. Kojima, M. Yanai, and K. Nakanishi, Tetrahedron, 21, 3091(1965).
- 9)T. Ohta and H. Hikino, Org. Magn. Reson., 12, 445(1979).
- 10) T. Masutani, K. Kawazu, K. Uneyama, S. Torii, and J. Iwasa, Agric. Biol. Chem., 43, 631(1979).
- 11)N. Shirai, H. Nakata, T. Kaiya, and J. Sakakibara, Chem. Pharm. Bull., 28, 365(1980).
- 12) J. Sakakibara, K. Ikai, and M. Yasue, Yakugaku Zasshi, 94, 1534(1974).

(Received August 30, 1985)