Chem. Pharm. Bull. 33(12)5264—5269(1985)

Quinolizidines. XVI.¹⁾ Chiral Syntheses of 9-Demethylcephaeline and 10-Demethylcephaeline²⁾

Tozo Fujii* and Masashi Ohba

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan

(Received April 25, 1985)

In order to establish the structure of the *Alangium* alkaloid demethylcephaeline, chiral syntheses of the two possible alternative structures, (-)-9-demethylcephaeline (1) and (-)-10-demethylcephaeline (2), have been accomplished through a "cincholoipon-incorporating route." The synthesis of (-)-2 started with an initial condensation of the tricyclic acid (-)-12b, prepared from the ester (-)-11b by alkaline hydrolysis, with 3-benzyloxy-4-methoxyphenethylamine and proceeded through the intermediates (-)-13b, (+)-15b, and (-)-14b. The 1'-epimers (-)-18b and (-)-17 were also produced in this reaction sequence. A parallel sequence of conversions starting with (+)-15a afforded (-)-1 via the intermediate (-)-14a, together with the 1'-epimer (-)-16 via (-)-18a. Unfortunately, however, lack of a sufficient amount of natural (-)-demethylcephaeline for a detailed and direct comparison precluded identification of either (-)-1 or (-)-2 with this alkaloid, leaving its chemistry incomplete.

Keywords—demethylcephaeline; demethylisocephaeline; diethyl phosphorocyanidate amide formation; Bischler–Napieralski cyclization; carbon–nitrogen double-bond catalytic reduction; benzyl ether catalytic hydrogenolysis; TLC epimer differentiation; NMR epimer differentiation

In 1970, Pakrashi and Achari³⁾ reported the isolation of (-)-demethylcephaeline, a new phenolic benzoquinolizidine alkaloid, from the stem bark of the Indian medicinal plant *Alangium lamarckii* THWAITES (Alangiaceae). On the basis of its chemical correlation with cephaeline (3) and emetine (4), as well as ultraviolet (UV), infrared (IR), and mass spectral evidence, they assigned either structure 1 (absolute configuration shown⁴⁾) or 2 to the new base, with their preference for 2.³⁾ However, differentiation between the 9- and the 10-demethyl structures was not possible at that time. With the aim of determining which

structure is correct, we tried to synthesize both of the possible alternative structures, 9-demethylcephaeline (1) and 10-demethylcephaeline (2), through a "cincholoipon-incorporating route." The simultaneous setting of the two synthetic targets is reasonable since we have recently shown that (+)-desmethylpsychotrine, another phenolic A. lamarckii

alkaloid,⁶⁾ has the 9-demethyl structure **5**,⁷⁾ whereas (-)-demethyltubulosine, yet another phenolic *A. lamarckii* alkaloid,^{6,8)} is not a 9-demethylated base,⁹⁾ but 10-demethyltubulosine (**7**).^{1,10)} The occurrence of both 9-demethylprotoemetinol (**8**) and 10-demethylprotoemetinol (**9**) in the seeds of *A. lamarckii* has also been reported quite recently.¹¹⁾

For the synthesis of the first target, 9-demethylcephaeline (1), we selected (+)-O,O-dibenzyl-9-demethylpsychotrine (15a) as a key intermediate. When the present work was commenced, this intermediate had already been prepared from (+)-ethyl cincholoiponate (10), a degradation product from the *Cinchona* alkaloid cinchonine, by a 13-step synthesis [through (-)-11a, (-)-12a, and (-)-13a] and utilized by us for the synthesis of (+)-9-demethylpsychotrine (5). Catalytic hydrogenation of (+)-15a in EtOH over Adams catalyst and chromatographic separation of the products furnished (-)-O,O-dibenzyl-9-demethylcephaeline (14a) and its 1'-epimer [(-)-18a] in 47% and 30% yields, respectively. On debenzylation using hydrogen and Pd-C catalyst, (-)-14a gave the first target molecule (-)-1

TABLE I. ¹³C Chemical Shifts of (-)-O, O-Dibenzyl-9-demethylcephaeline (**14a**), (-)-O, O-Dibenzyl-10-demethylcephaeline (**14b**), and Their 1'α-H Isomers (-)-**18a**, **b** in CDCl₃

Carbon	Chemical shift ^a				Comban	Chemical shift ^{a)}			
	(-)-14a	(–)-14b	(-)-18a	(-)-18b	Carbon	(–)-14a	(—)-14b	(-)-18a	(–)-18b
C(1)	36.9	36.7	39.4	39.2	C(4')	29.2	29.4	29.4 ^{b)}	29.2
C(2)	36.9	36.7	38.9	39.0	C(4'a)	127.0	127.0	127.2	127.0
C(3)	41.7	41.9	42.9	42.9	C(5')	114.8	114.8	114.8	114.8
C(4)	61.4	61.4	61.6	61.5	C(6')	$146.8^{c)}$	146.7^{d}	$146.7^{e)}$	146.7^{f}
C(6)	52.3	52.4	52.5	52.5	C(7')	148.0°	148.0^{d}	$147.8^{e)}$	147.8^{f}
C(7)	29.2	29.4	$29.1^{b)}$	29.2	C(8')	110.0	110.1	110.4	110.4
C(7a)	127.0	127.6	126.7	127.3	C(8'a)	132.7	132.9	132.7	132.6
C(8)	114.5	112.1^{g}	114.4	112.1^{h}	9-OMe		56.0		56.0
C(9)	146.6°	148.3^{d}	146.7^{e}	148.2^{f}	10-OMe	56.6		56.3	
C(10)	147.9 ^{c)}	146.1^{d}	147.8^{e}	146.2^{f}	7'-OMe	56.2	56.2	56.3	56.3
C(11)	109.7	112.4^{g_1}	109.1	111.8^{h}	9-OCH ₂	71.0		71.1	
C(11a)	131.0	130.3	130.8	130.1	10-OCH ₂		71.7		71.6
C(11b)	62.4	62.3	62.8	62.6	6'-OCH ₂	71.2	71.2	71.1	71.0
C(12)	40.2	40.3	40.7	40.7	Ph	137.3	137.6	137.2	137.4
C(13)	23.5	23.5	24.0	24.0			137.3		137.2
C(14)	11.2	11.2	11.3	11.3	1	128.4	128.5	128.4	128.3
C(1')	51.9	51.8	55.3	55.2		127.6	127.6	127.6	127.6
C(3')	40.7	40.7	41.1	41.0		127.2	127.3	127.2	127.2

a) In ppm downfield from internal Me₄Si. b—h) Assignments indicated by a given superscript may be interchanged.

Vol. 33 (1985)

Chart 1

[mp 147 °C; $[\alpha]_D^{12}$ – 55.0 ° (CHCl₃)] in 82% yield. A similar hydrogenolysis of the epimeric base (–)-**18a** afforded the corresponding phenolic base (–)-**16** in 73% yield.

The configurations at C-1' of (-)-14a and (-)-18a and hence those of (-)-1 and (-)-16 were assigned on the basis of the following evidence. The above formation of a 1.6:1 mixture of (-)-14a and (-)-18a from (+)-15a is comparable to that 12) of a 1.7:1 mixture of emetine (4) and its 1'-epimer (isoemetine) in a similar hydrogenation of O-methylpsychotrine (6). On thin-layer chromatographic (TLC) analysis, (-)-14a moved faster than (-)-18a. In the 13 C nuclear magnetic resonance (13 C-NMR) spectra in CDCl₃ (see Table I), the C(1), C(2), and C(1') carbon signals of (-)-14a appeared upfield from the corresponding signals of the 1'-epimer (-)-18a by 2.0—3.4 ppm. In the 1 H-NMR spectra in CDCl₃, the C(1')H proton of (-)-14a resonated at δ 4.11 as a doublet with J= 5 Hz. These chemical TLC, and NMR spectral features of (-)-14a and (-)-18a fulfilled all the recently reported criteria 1,9b,13 for distinguishing between the $1'\beta$ -H and $1'\alpha$ -H isomers in such unique ring systems.

We next proceeded to the synthesis of the second target, 10-demethylcephaeline (2).

No. 12 5267

Alkaline hydrolysis of the tricyclic ester (-)-11b, prepared from (+)-10 in 24% overall yield through the recently reported synthetic route ("cincholoipon-incorporating route"), 14) gave the amino acid (-)-12b in 98% yield. Condensation of (-)-12b with 3-benzyloxy-4-methoxyphenethylamine in N,N-dimethylformamide (DMF) by the diethyl phosphorocyanidate method 15) produced the amide (-)-13b (90% yield), which was then cyclized with POCl₃ in boiling toluene to provide (+)-O,O-dibenzyl-10-demethylpsychotrine (15b) in 87% yield. The correctness of the structures of (-)-12b, (-)-13b, and (+)-15b was verified by their spectral identity with the corresponding racemic modifications which had been obtained in the course of our recent synthesis 1b of (±)-10-demethylpsychotrine. The subsequent steps to 2 were essentially the same as described above for the 9-demethyl series, giving an epimeric pair of (-)-14b [48% yield from (+)-15b] and (-)-18b (29% yield) first, and then the desired second target (-)-2 [mp 148 °C; [α] $_D^{17}$ -53.0° (CHCl₃); 73% yield from (-)-14b and (-)-18b [and hence that of (-)-2 and (-)-17] was confirmed as in the case of the above 9-demethyl congeners (see also Table I).

With the two candidate compounds (-)-1 and (-)-2 in hand, we now proceeded to the problem of identification with natural (-)-demethylcephaeline [mp 147—149 °C;³) [a]_D -53.5 ° (CHCl₃)³)]. The UV (in EtOH or 0.1 N ethanolic NaOH), IR (in Nujol), and mass spectra of all three were so closely similar that they were impracticable as a means of identification. Although the ¹H-NMR spectra (in CDCl₃) of (-)-1 and (-)-2 were clearly differentiated from one another, that of the natural alkaloid had not been measured at that time. Unfortunately, no sample of natural (-)-demethylcephaeline was available for obtaining a ¹H-NMR spectrum and/or for a mixture melting point test, and this precluded identification of either (-)-1 or (-)-2 with the Alangium alkaloid, thus leaving its chemistry incomplete. Since (-)-demethylcephaeline has been shown to be a constituent of an amorphous alkaloidal mixture (AL 60, isolated from A. lamarckii) exerting dose-dependent biphasic action on blood pressure, ³) further isolation of this alkaloid from the natural source in a sufficient quantity for a detailed and direct comparison with the synthetic samples is necessary before chemical and pharmacological investigations can continue.

Experimental

General Notes—All melting points were determined with a Yamato MP-1 capillary melting point apparatus and are corrected. Unless otherwise stated, the organic solutions obtained after extraction were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. See refs. 1 and 14b for details of instrumentation and measurements. Microanalyses were performed by Mr. Y. Itatani and his associates at Kanazawa University. The following abbreviations are used: d = doublet, m = multiplet, q = quartet, s = singlet, s = shoulder, t = triplet.

(2R,3R,11bS)-10-Benzyloxy-3-ethyl-1,3,4,6,7,11b-hexahydro-9-methoxy-2H-benzo[a]quinolizine-2-acetic Acid [(-)-12b]——A solution of the tricyclic ester (-)-11b¹⁴ (875 mg, 2 mmol) and 2 N aqueous NaOH (2 ml) in EtOH (15 ml) was stirred at room temperature for 24 h. The reaction mixture was concentrated *in vacuo*, and H₂O (15 ml) was added to the residual oil. The resulting aqueous solution was neutralized with 2 N aqueous HCl (2 ml) to deposit a pale yellowish gum, which was extracted with CHCl₃. The CHCl₃ extracts were washed with saturated aqueous NaCl, dried, and concentrated to leave (-)-12b (802 mg, 98%) as an almost colorless glass, [α]_D¹⁸ - 56.8 ° (c = 0.50, EtOH); MS m/e: 409 (M⁺). The IR (CHCl₃) and ¹H-NMR (CDCl₃) spectra of this sample were identical with those of authentic (+)-12b.^{7b}

(2R,3R,11bS)-10-Benzyloxy-N-(3-benzyloxy-4-methoxyphenethyl)-3-ethyl-1,3,4,6,7,11b-hexahydro-9-methoxy-2H-benzo[a]quinolizine-2-acetamide [(-)-13b]—The tricyclic acid (-)-12b was allowed to react with 3-benzyloxy-4-methoxyphenethylamine¹⁶⁾ by the diethyl phosphorocyanidate method¹⁵⁾ in a manner similar to that carried out in the recent synthesis^{7a,c)} of (-)-13a from (-)-12a, giving (-)-13b in 90% yield as a colorless solid. Recrystallization of the solid from EtOH produced an analytical sample as colorless minute needles, mp 149—151 °C; $[\alpha]_D^{20}$ - 22.2 ° (c = 0.50, EtOH). Anal. Calcd for $C_{41}H_{48}N_2O_5$: C, 75.90; H, 7.46; N, 4.32. Found: C, 75.79; H, 7.45; N, 4.13. The IR (CHCl₃) and ¹H-NMR (CDCl₃) spectra and TLC mobility of this sample were identical with those of authentic (±)-13b.^{7b)}

(2R,3R,11bS)-10-Benzyloxy-2-(6-benzyloxy-3,4-dihydro-7-methoxy-1-isoquinolyl)methyl-3-ethyl-1,3,4,6,7,11b-hexahydro-9-methoxy-2H-benzo[a]quinolizine [(+)-15b] — Crude (+)-15b was obtained from (-)-13b and POCl₃ as described recently for (+)-15 $a^{7a.c.}$) and purified by column chromatography [alumina, AcOEt-hexane (1:1, v/v)] to give a faintly yellowish glass (87% yield), [α]_D²⁶ + 39.9° (c = 0.96, EtOH); MS m/c: 630 (M⁺). The IR (CHCl₃) and ¹H-NMR (CDCl₃) spectra of this sample were superimposable on those of authentic (±)-15b.^{7b)}

[2S-[2 α (S*),3 β ,11b β]]- and [2S-[2 α (R*),3 β ,11b β]]-9-Benzyloxy-2-(6-benzyloxy-7-methoxy-1,2,3,4-tetrahydro-1-isoquinolyl)methyl-3-ethyl-1,3,4,6,7,11b-hexahydro-10-methoxy-2*H*-benzo[*a*]quinolizines [(-)-14a and (-)-18a]—A solution of (+)-15a^{7a,c}) (1.01 g, 1.6 mmol) in EtOH (30 ml) was hydrogenated over Adams catalyst (120 mg) at atmospheric pressure and 18 °C for 1 h. Removal of the catalyst by filtration and evaporation of the filtrate under reduced pressure left a yellow oil, which was dissolved in CHCl₃ (80 ml). The CHCl₃ solution was washed successively with 5% aqueous NaOH and saturated aqueous NaCl, dried, and concentrated to leave an orange glass (972 mg). This material was chromatographed successively on a Merck Lobar column (LiChroprep Si 60) and a silica gel column using CHCl₃—MeOH (10:1, v/v) as the eluent, and then on preparative TLC plates [silica gel, CHCl₃—MeOH (10:1, v/v)]. The fractions with higher TLC mobility (*Rf* 0.61) gave (-)-0,0-dibenzyl-9-demethylcephaeline [(-)-14a] (478 mg, 47%) as a faintly yellowish glass, [α]²⁶ -18.7° (c=0.82, EtOH); MS m/e: 632 (M⁺); IR v^{CHCl₃} 2760 cm⁻¹ (trans-quinolizidine ring); 17) 1</sup>H-NMR (CDCl₃) δ : 0.89 (3H, t, J=6.6 Hz, CCH₂Me), 3.81 and 3.85 (3H each, s, two OMe's), 4.11 (1H, d, J=10.5 Hz, H_(1')), 5.10 (4H, s, two OCH₂Ph's), 6.56 and 6.80 (1H each, s, aromatic protons), 6.62 (2H, s, two aromatic protons), 7.1—7.5 (10H, m, two OCH₂Ph's); 13C-NMR (Table I).

The fractions with lower TLC mobility (Rf 0.54) in the above chromatography afforded the 1' α -H isomer (–)-18a (308 mg, 30%) as a yellow glass, [α]_D²⁶ –25.6% (c = 0.66, EtOH); MS m/e: 632 (M⁺); IR $\nu_{\rm max}^{\rm CHCl_3}$ 2760 cm⁻¹ (transquinolizidine ring); ^{17) 1}H-NMR (CDCl₃) δ : 0.94 (3H, t, J = 6.6 Hz, CCH₂Me), 3.80 and 3.83 (3H each, s, two OMe's), 4.04 (1H, dull t, J = 5 Hz, H_(1')), 5.07 (4H, s, two OCH₂Ph's), 6.59 and 6.69 (1H each, s, aromatic protons), 6.61 (2H, s, two aromatic protons), 7.1—7.5 (10H, m, two OCH₂Ph's); ¹³C-NMR (Table I).

[2S-[2 α (S*),3 β ,11b β]]- and [2S-[2 α (R*),3 β ,11b β]]-10-Benzyloxy-2-(6-benzyloxy-7-methoxy-1,2,3,4-tetrahydro-1-isoquinolyl)methyl-3-ethyl-1,3,4,6,7,11b-hexahydro-9-methoxy-2*H*-benzo[*a*]quinolizines [(-)-14b and (-)-18b]—These two isomers were prepared from (+)-15b by a catalytic reduction similar to that described above for (-)-14a and (-)-18a, and by subsequent chromatographic separation on an alumina column [hexane-AcOEt (2:1, v/v)] and on a silica gel column [CHCl₃-MeOH (10:1, v/v)].

(-)-*O*,*O*-Dibenzyl-10-demethylcephaeline [(-)-**14b**] was isolated as a faintly yellowish glass (48% yield), TLC *Rf* 0.55 [silica gel, CHCl₃–MeOH (10:1, v/v)] or 0.49 [alumina, hexane–AcOEt (2:1, v/v)]; [α]_D³⁰ -33.2° (c=0.50, EtOH); MS m/e: 632 (M⁺); IR $v_{max}^{CHCl_3}$ 2760 cm⁻¹ (*trans*-quinolizidine ring); ^{17) 1}H-NMR (CDCl₃) δ: 0.87 (3H, t, J=6.6 Hz, CCH₂Me), 3.82 and 3.85 (3H each, s, two OMe's), 3.96 (1H, d, J=10.5 Hz, H_(1')), 5.05 and 5.16 (2H, AB type d's, J=12 Hz, OCH₂Ph), 5.10 (2H, s, OCH₂Ph), 6.52, 6.60, 6.62, and 6.74 (1H each, s, aromatic protons), 7.1—7.5 (10H, m, two OCH₂Ph's); ¹³C-NMR (Table I).

The 1' α -H isomer (–)-**18b** was obtained as a faintly orange glass (29% yield), TLC Rf 0.47 [silica gel, CHCl $_3$ -MeOH (10:1, v/v)] or 0.25 [alumina, hexane–AcOEt (2:1, v/v)]; [α] $_0^{30}$ – 30.9° (c = 0.50, EtOH); MS m/e: 632 (M $^+$); IR $v_{\rm max}^{\rm CHCl}$ $_3$ 2760 cm $^{-1}$ (trans-quinolizidine ring); ^{17) 1}H-NMR (CDCl $_3$) δ : 0.93 (1H, t, J = 6.6 Hz, CCH $_2$ Me), 3.82 (6H, s, two OMe's), 3.99 (1H, dull t, J = 5.8 Hz, H $_{(1')}$), 5.05 and 5.07 (2H each, s, two OCH $_2$ Ph's), 6.58, 6.61, 6.66, and 6.68 (1H each, s, aromatic protons), 7.1—7.5 (10H, m, two OCH $_2$ Ph's): ¹³C-NMR (Table 1).

[2S-[2α(S*),3β,11bβ]]-3-Ethyl-1,3,4,6,7,11b-hexahydro-9-hydroxy-2-(6-hydroxy-7-methoxy-1,2,3,4-tetrahydro-1-isoquinolyl)methyl-10-methoxy-2H-benzo[a]quinolizine [(-)-9-Demethylcephaeline] [(-)-1]——A solution of (-)-14a (443 mg, 0.7 mmol) in MeOH-AcOH (1:1, v/v) (30 ml) was hydrogenated over 10% Pd-C (350 mg) at atmospheric pressure and 18 °C for 3 h. The catalyst was filtered off and washed with MeOH (20 ml). The filtrate and washings were combined and concentrated in vacuo to leave a yellow oil, which was dissolved in H₂O (10 ml). The aqueous solution was made alkaline with 10% aqueous Na2CO3 and extracted with CHCl3. The CHCl3 extracts were washed with saturated aqueous NaCl, dried, and concentrated to leave a yellowish-brown solid (306 mg). Purification of the solid by column chromatography [alumina, CHCl₃-EtOH (10:1, v/v)] gave (-)-1 (260 mg, 82%) as a yellowish solid. The solid was then recrystallized from benzene, producing an analytical sample as faintly yellowish minute needles, mp 147 °C (sintered at 124 °C); $[\alpha]_D^{12} - 55.0$ ° (c = 0.50, CHCl₃); MS m/e (relative intensity): 453 (M⁺ + 1) (19), 452 (M⁺) (60), 275 (12), 274 (27), 272 (18), 261 (15), 260 (18), 259 (21), 258 (51), 232 (23), 230 (23), 192 (53), 191 (28), 179 (12), 178 (100), 177 (18); UV λ_{max} (EtOH) 225 nm (sh) (ε 14300), 284.5 (7770), 288 (7800); λ_{max} (0.1 N aqueous NaOH) 243 (17200), 299 (10100); λ_{max} (0.1 N aqueous HCl) 223.5 (13800), 284 (6980); ¹H-NMR (CDCl₃) δ : 0.89 (3H, t, J = 6.5 Hz, CCH₂Me), 3.81 and 3.84 (3H each, s, two OMe's), 4.10 (1H, d, J = 11 Hz, H_(1')), 6.50 and 6.72 (1H each, s, aromatic protons), 6.63 (2H, s, two aromatic protons). Anal. Calcd for C₂₇H₃₆N₂O₄: C, 71.65; H, 8.02; N, 6.19. Found: C, 71.72; H, 7.89; N, 5.89.

[2S-[2 α (S*),3 β ,11b β]]-3-Ethyl-1,3,4,6,7,11b-hexahydro-10-hydroxy-2-(6-hydroxy-7-methoxy-1,2,3,4-tetrahydro-1-isoquinolyl)methyl-9-methoxy-2*H*-benzo[a]quinolizine [(-)-10-Demethylcephaeline] [(-)-2]—Hydrogenolysis of (-)-14b and work-up of the reaction mixture were carried out as described above for (-)-1, affording (-)-2·H₂O (73% yield) as a yellow solid. Recrystallization of the solid from benzene and drying over P₂O₅ at 2 mmHg and

50 °C for 20 h gave an analytical sample as faintly yellowish minute needles, mp 148 °C (sintered at 129—130 °C); $[\alpha]_{D}^{17}$ –53.0 °(c = 0.50, CHCl₃); MS m/e (relative intensity): 453 (M + +1) (14), 452 (M +) (46), 275 (17), 274 (29), 272 (14), 261 (12), 260 (17), 259 (17), 258 (40), 232 (21), 230 (20), 192 (32), 191 (22), 179 (12), 178 (100), 177 (12); UV λ_{max} (EtOH) 225 nm (sh) (ϵ 15100), 286 (7730); λ_{max} (0.1 N aqueous NaOH) 243 (15700), 299 (9940); λ_{max} (0.1 N aqueous HCl) 223.5 (13900), 284 (6650); ¹H-NMR (CDCl₃) δ : 0.88 (3H, t, J = 6.5 Hz, CCH₂Me), 3.81 and 3.85 (3H each, s, two OMe's), 4.06 (1H, d, J = 11.2 Hz, H_(1')), 6.47, 6.55, 6.61, and 6.81 (1H each, s, aromatic protons). *Anal.* Calcd for $C_{27}H_{36}N_2O_4 \cdot H_2O$: C, 68.91; H, 8.14; N, 5.95. Found: C, 69.03; H, 7.88; N, 5.61.

[2S-[2 α (R*)-3 β ,11b β]]-3-Ethyl-1,3,4,6,7,11b-hexahydro-9-hydroxy-2-(6-hydroxy-7-methoxy-1,2,3,4-tetrahydro-1-isoquinolyl)methyl-10-methoxy-2H-benzo[α]quinolizine [(-)-9-Demethylisocephaeline] [(-)-16]—Debenzylation of (-)-18 α was effected as described above for (-)-1, and crude (-)-16 was obtained in 73% yield as a yellowish solid. Recrystallization of the solid from EtOH-hexane (1:1, v/v) and drying over P₂O₅ at 2 mmHg and 50 °C for 10 h yielded an analytical sample of (-)-16·1/2EtOH as colorless minute needles, mp 178—180 °C; [α] $_{\rm D}^{12}$ -94.0 ° (c =0.36, CHCl₃); MS m/e: 452 (M⁺); UV $\lambda_{\rm max}$ (EtOH) 225 nm (sh) (ϵ 14000), 285 (7780), 288 (7790); $\lambda_{\rm max}$ (0.1 N aqueous NaOH) 243 (16800), 299 (10100); $\lambda_{\rm max}$ (0.1 N aqueous HCl) 223.5 (13700), 284 (6760); ¹H-NMR (CDCl₃) δ : 0.94 (3H, t, J =6.5 Hz, CCH₂Me), 1.24 (1.5H, t, J =7.0 Hz, MeCH₂OH), 3.71 (1H, q, J =7.0 Hz, MeCH₂OH), 3.78 and 3.80 (3H each, s, two OMe's), 4.07 (1H, dull t, J = 5.2 Hz, H_(1')), 6.45, 6.56, 6.61, and 6.63 (1H each, s, aromatic protons). *Anal.* Calcd for C₂₇H₃₆N₂O₄·1/2C₂H₅OH: C, 70.71; H, 8.26; N, 5.89. Found: C, 70.79; H, 8.25; N, 5.69.

[2S-[2 $\alpha(R^*)$,3 β ,11b β]]-3-Ethyl-1,3,4,6,7,11b-hexahydro-10-hydroxy-2-(6-hydroxy-7-methoxy-1,2,3,4-tetrahydro-1-isoquinolyl)methyl-9-methoxy-2*H*-benzo[*a*]quinolizine [(-)-10-Demethylisocephaeline] [(-)-17]——The benzyl ether (-)-18b was debenzylated as described above for (-)-1, furnishing crude (-)-17 in 77% yield as a faintly yellow solid. Recrystallization of the solid from EtOH and drying over P_2O_5 at 2 mmHg and 50 °C for 20 h gave (-)-17 · H_2O as colorless needles, mp 114—116 °C; [α] $_0^{17}$ – 50.0 ° (c = 0.34, CHCl $_3$); MS m/e: 452 (M $^+$); UV λ_{max} (EtOH) 225 nm (sh) (ε 14900), 286 (7770); λ_{max} (0.1 N aqueous NaOH) 243 (15700), 299.5 (10200); λ_{max} (0.1 N aqueous HCl) 224 (13800), 284 (6760); ¹H-NMR (CDCl $_3$) δ : 0.93 (3H, t, J = 6.8 Hz, CCH $_2$ Me), 3.83 and 3.84 (3H each, s, two OMe's), 3.97 (1H, dull t, J = 5.8 Hz, $H_{(17)}$), 6.53, 6.61, 6.64, and 6.67 (1H each, s, aromatic protons). *Anal.* Calcd for $C_{27}H_{36}N_2O_4 \cdot H_2O$: C, 68.91; H, 8.14; N, 5.95. Found: C, 68.86; H, 8.17; N, 5.67.

Acknowledgment The authors are grateful to Dr. S. C. Pakrashi (Calcutta) for a generous gift of copies of the UV, IR, and mass spectra of natural demethylcephaeline, to Professor S. Yamada (Tokyo) for financial assistance in the form of a grant from the Japan Research Foundation for Optically Active Compounds, and to Professor T.Shioiri (Nagoya) for a gift of diethyl phosphorocyanidate.

References and Notes

- 1) Paper XV in this series, T. Fujii and M. Ohba, Chem. Pharm. Bull., 33, 4314 (1985).
- 2) A preliminary account of this work has been published: T. Fujii and M. Ohba, Heterocycles, 19, 857 (1982).
- 3) S. C. Pakrashi and B. Achari, Experientia, 26, 933 (1970).
- 4) Unless otherwise noted, the structural formulas of optically active compounds in this paper represent their absolute configurations.
- 5) For the "cincholoipon-incorporating route" leading to the chiral synthesis of the benzo[a]quinolizidine-type Alangium alkaloids, see references cited in refs. 7c and 14.
- 6) S. C. Pakrashi and E. Ali, Tetrahedron Lett., 1967, 2143.
- 7) a) T. Fujii, M. Ohba, S. C. Pakrashi, and E. Ali, *Tetrahedron Lett.*, **1979**, 4955; b) T. Fujii and M. Ohba, *Chem. Pharm. Bull.*, **33**, 144 (1985); c) *Idem, ibid.*, **33**, 583 (1985).
- 8) A. Popelak, E. Haack, and H. Spingler, Tetrahedron Lett., 1966, 1081.
- 9) a) M. Ohba, M. Hayashi, and T. Fujii, Heterocycles, 14, 299 (1980); b) Idem, Chem. Pharm. Bull., 33, 3724 (1985).
- 10) T. Fujii, M. Ohba, A. Popelak, S. C. Pakrashi, and E. Ali, Heterocycles, 14, 971 (1980).
- 11) a) E. Ali, R. R. Sinha, B. Achari, and S. C. Pakrashi, *Heterocycles*, **19**, 2301 (1982); b) T. Fujii, M. Ohba, H. Suzuki, S. C. Pakrashi, and E. Ali, *ibid.*, **19**, 2305 (1982).
- 12) A. R. Battersby and J. C. Turner, J. Chem. Soc., 1960, 717.
- 13) T. Fujii, H. Kogen, S. Yoshifuji, and M. Ohba, Chem. Pharm. Bull., 33, 1946 (1985).
- 14) a) T. Fujii, M. Ohba, and H. Suzuki, Heterocycles, 19, 705 (1982); b) Idem, Chem. Pharm. Bull., 33, 1023 (1985).
- 15) T. Shioiri, Y. Yokoyama, Y. Kasai, and S. Yamada, Tetrahedron, 32, 2211 (1976).
- 16) M. Tomita and H. Yamaguchi, Yakugaku Zasshi, 72, 1219 (1952).
- 17) a) F. Bohlmann, Chem. Ber., 91, 2157 (1958); b) E. Wenkert and D. K. Roychaudhuri, J. Am. Chem. Soc., 78, 6417 (1956).