Communications to the Editor

Chem. Pharm. Bull. 33(12)5601--5602(1985)

NEW METHODS AND REAGENTS IN ORGANIC SYNTHESIS. 57.1) A STEREOSELECTIVE SYNTHESIS OF A DERIVATIVE OF <u>D</u>-RISTOSAMINE

Yasumasa Hamada,* Akiyoshi Kawai, and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

A derivative of \underline{D} -ristosamine, the enantiomer of a carbohydrate component of the antibiotics ristomycin, has been prepared from ethyl \underline{L} -lactate in a stereoselective manner using the Mitsunobu reaction as a key step.

KEYWORDS — \underline{D} -ristosamine; C-acylation; diphenyl phosphorazidate; methyl isocyanoacetate; amino sugar synthesis; Mitsunobu reaction; \underline{D} -ribonolactone

Recently we described a highly efficient stereoselective synthesis of two amino sugars, $\underline{\underline{L}}$ -daunosamine²⁾ and a derivative of $\underline{\underline{L}}$ -vancosamine,³⁾ by a route starting with $\underline{\underline{L}}$ -lactic acid ($\underline{\underline{1}}$, R=H), involving the direct C-acylation of methyl isocyanoacetate with the lithium salt of O-methoxymethyl- $\underline{\underline{L}}$ -lactic acid using diphenyl phosphorazidate (DPPA, $(C_6H_50)_2P(0)N_3$),⁴⁾ and choosing the $\underline{\underline{L}}$ -lyxono-1,4-lactone $\underline{\underline{2}}$ (R=H) as a common key intermediate.

We now report a convenient stereoselective synthesis of $\underline{\mathbb{D}}$ -ristosamine $\underline{\mathbf{3}}$, $\underline{\mathbf{5}}$) the enantiomer of the carbohydrate component of the antibiotics ristomycin, as its N,O-diacetyl methyl glycoside, involving a synthetic method analogous to the amino sugar synthesis. 2 , 3) The key feature of our synthesis is the inversion of the chiral center at the C-4 position of $\mathbf{2}$.

Commercially available ethyl \underline{L} -lactate ($\underline{1}$, $R=C_2H_5$) was first efficiently converted to the \underline{L} -lyxono-1,4-lactone $\underline{2}$ (R=H) in 6 steps in an overall yield of 52% according to the method developed by us.²) Treatment of $\underline{2}$ (R=H) with t-butylchlorodimethylsilane (2 eq) in the presence of imidazole (2.6 eq) in dimethylformamide (room temp., 2 days) quantitatively afforded the silyl ether $\underline{2}$ ($R=TBDMS^6$) as a colorless oil. Hydrolysis of the silyl ether $\underline{2}$ with 1N aqueous sodium hydroxide in methanol (-20°C, 16 h; room temp., 3 h), followed by neutralization with 1N hydrochloric acid, produced the ring-opened hydroxy acid. Inversion of the chiral center at the C-4 position was achieved by the Mitsunobu reaction⁷) with a mixture of triphenylphosphine (1.5 eq) and diethyl azodicarboxylate (DEAD, 1.5 eq) in tetrahydrofuran (room temp., 18 h) to give the \underline{D} -ribonolactone $\underline{4}$ (R=TBDMS) as a colorless oil, \underline{C} \underline

 $(-65 \sim -70\,^{\circ}\text{C}, 3 \text{ h, under argon})$ gave the lactol $\underline{5}$ (R=TBDMS) as a colorless oil in 82% yield. The reaction of $\underline{5}$ with methoxymethylenetriphenylphosphorane²⁾ (4.2 eq) in glyme-toluene (-10°C, 40 min; room temp., 1.5 h; under argon) afforded the methyl ether $\underline{6}$ (R=TBDMS) in 51% yield with the recovery of the starting $\underline{5}$ in 17% yield. Final construction of \underline{D} -ristosamine as its N,O-diacetyl methyl glycoside was achieved by treating $\underline{6}$ (R=TBDMS) with 5% methanolic hydrogen chloride (45°C, 17 h) and the subsequent acetylation with acetic anhydride in pyridine (room temp., 15 h), giving $\underline{7}$, mp 50-52°C, $[\alpha]_{\overline{0}}^{23}$ +127.6° (c=0.30, CHCl₃), in 51% yield. Synthetic methyl N,O-diacetyl α - \underline{D} -ristosaminide ($\underline{7}$) was indistinguishable from its \underline{L} -isomer^{5c}) by IR, Mass, 1 H- and 13 C-NMR spectral data and by chromatographic mobility on silica gel, except for the sign of its specific rotation.

This \underline{D} -ristosamine derivative $\underline{7}$ was prepared more efficiently by an alternative route without protection of the C-3 hydroxyl function of the lyxono-1,4-lactone $\underline{2}$ (R=H). Hydrolysis of $\underline{2}$ (R=H) with potassium superoxide (3 eq) and 18-crown-6 (0.3 eq) in tetrahydrofuran-methanol-water (4:1:1) (0°C, 4 h), acidification with 20% hydrochloric acid to pH 4, followed by the Mitsunobu reaction as described above afforded an inseparable mixture of the \underline{D} -ribonolactone $\underline{4}$ (R=H) and diethyl hydrazinedicarboxylate in a ratio of 1.3:1. Reduction of this mixture with diisobutylaluminum hydride (5 eq) in dichloromethane (-73°C, 10 h; under argon) gave the pure lactol $\underline{5}$ (R=H), mp 90-92°C, $[\alpha]_0^2$ 5 -11.3° (equil., c=1, MeOH), in 71% yield from $\underline{2}$ (R=H). Sequential Wittig reaction, acid treatment, and acetylation as described above afforded the \underline{D} -ristosamine derivative $\underline{7}$.

The above synthetic methodology using the lactone $\underline{2}$ as a key intermediate will be applicable to the synthesis of other amino sugars.

ACKNOWLEDGEMENT This work was supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture, Japan (No. 60470151). We are grateful to Prof. T. Suami and Dr. K. Tadano of Keio University for a gift of methyl N,O-diacetyl α -L-ristosaminide.

REFERENCES AND NOTES

- 1) For Part 56, see Y. Hamada, M. Shibata, and T. Shioiri, Tetrahedron Lett., in press.
- 2) Y. Hamada, A. Kawai, and T. Shioiri, Tetrahedron Lett., <u>25</u>, 5409 (1984).
- 3) Y. Hamada, A. Kawai, and T. Shioiri, Tetrahedron Lett., 25, 5413 (1984).
- 4) Cf. Y. Hamada and T. Shioiri, Tetrahedron Lett., <u>23</u>, 235, 1226 (1982); Y. Hamada and T. Shioiri, Tetrahedron Lett., <u>23</u>, 1193 (1982).
- 5) For previous syntheses, see a) A. Bongini, G. Cardillo, M. Orena, S. Sandri, and C. Tomasini, Tetrahedron, 39, 3801 (1983) and references therein; b) C. H. Heathcock and S. H. Montgomery, Tetrahedron Lett., 24, 4637 (1983) and references therein; c) T. Suami, K. Tadano, A. Suga, and Y. Ueno, J. Carbohydr. Chem., 3, 429 (1984); d) S. Hanessian and J. Kloss, Tetrahedron Lett., 26, 1261 (1985).
- 6) TBDMS= t-butyldimethylsilyl.
- 7) O. Mitsunobu, Synthesis, 1981, 1.

(Received September 30, 1985)