Chem. Pharm. Bull. 33(2) 540-543 (1985)

Syntheses of Derivatives of the Trisaccharide GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 3Man

Tadahiro Takeda,^a Shin-ichi Fujisawa,^a Yukio Ogihara,*,^a and Taro Hori^b

Faculty of Pharmaceutical Sciences, Nagoya City University,^a Nagoya 467, Japan and Department of Chemistry, Faculty of Liberal Arts and Education,
Shiga University,^b Otsu, Shiga 520, Japan

(Received June 4, 1984)

The glycosphingolipids isolated from spermatozoa of a fresh-water bivalve, Hyriopsis schlegelii, have a unique structure containing one or two mannosyl residues. We synthesized the trisaccharide derivatives which constitute the partial structure of lipid I and/or II. Condensation of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl bromide with methyl 3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside in the presence of mercuric cyanide gave methyl 3-O-benzyl-4,6-O-benzylidene-2-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-mannopyranoside in 80% yield. Condensation of the disaccharide bromide with the appropriate C-3 hydroxyl free mannose derivatives afforded the corresponding GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 3Man derivatives (11 and 12).

Keywords—glycosphingolipid; *Hyriopsis schlegelii*; lipid I; lipid II; condensation; trisaccharide

Hori *et al.*¹⁾ isolated 7 mannose-containing glycolipids from spermatozoa of a fresh-water bivalve, *Hyriopsis schlegelii*, and characterized them as Man β 1 \rightarrow 4Glc–Cer, Man α 1 \rightarrow 3Man β 1 \rightarrow 4Glc–Cer, Man α 1 \rightarrow 3(Xyl β 1 \rightarrow 2)Man β 1 \rightarrow 4Glc–Cer, GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 3Man β 1 \rightarrow 4Glc–Cer (lipid I), GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 3(Xyl β 1 \rightarrow 2)Man β 1 \rightarrow 4Glc–Cer (lipid II), Fuc3Me α 1 \rightarrow 2Xyl3Me α 1 \rightarrow 4GlcNAc α 2Man α 1 \rightarrow 3 Fuc α 1 \rightarrow 4GlcNAc α 3 (Xyl α 1 \rightarrow 2) Man α 1 \rightarrow 4Glc–Cer (lipid III), and Gal4Me α 1 \rightarrow 3GalNAc α 1 \rightarrow 3Fuc α 1 \rightarrow 4GlcNAc α 1 \rightarrow 2Man α 1 \rightarrow 3(Xyl α 1 \rightarrow 2)2'-aminoethylphosphoryl(α 6)Man α 1 \rightarrow 4Glc–Cer. These glycolipids have a unique structure containing one or two mannosyl residues.

We chose trisaccharides corresponding to the partial structure of lipid I and/or II as targets for our synthetic studies on oligosaccharides of biological interest. In this work, fully protected trisaccharides 11 and 12 were synthesized by stepwise condensation of suitably protected monosaccharide units.

Methyl 3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (3), which was prepared from methyl exo-2,3:4,6-di-O-benzylidene-α-D-mannopyranoside (1) according to the method of Lipták *et al.*,²⁾ was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl bromide (7)³⁾ in dichloromethane for 3 h at 0 °C, in the presence of silver trifluoromethanesulfonate, 2,4,6-collidine, and molecular sieve (4 Å). Purification of the crude product by column chromatography afforded in 80% yield the disaccharide derivative, methyl 3-O-benzyl-4,6-O-benzylidene-2-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-α-D-mannopyranoside (8), the proton nuclear magnetic resonance (1 H-NMR) spectrum of which supported the presence of the β 1 → 2 linkage (doublets at δ 5.44 with a spacing of 8 Hz). Acetolysis of 8 at 0 °C with the acetolysis reagent (1% H₂SO₄ in Ac₂O) described previously⁴⁾ afforded 9. The corresponding α-bromide (10) was prepared from 9 by treatment with hydrogen bromide in acetic acid. Without purification, the bromide (10) was condensed in the presence of mercuric cyanide with compound 5, which was prepared

from methyl 2-O-acetyl-3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside (4)⁵⁾ by hydrogenation using Pd/C in formic acid⁶⁾ or Pd(OH)₂/C in cyclohexene.⁷⁾ This reaction gave the fully protected trisaccharide, methyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 2)-O-(3,4,6-tri-O-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-2-O-acetyl-4,6-O-benzylidene- α -D-mannopyranoside (11), in 49.4% yield. The ¹H-NMR spectrum showed a benzylidene proton signal at δ 5.60, 7 acetyl group signals at δ 1.84—2.15, and a methoxy signal at δ 3.39 ppm. The carbon-13 nuclear magnetic resonance (¹³C-NMR) data showed three anomeric carbon atoms at δ 95.8 (C-1", J=153.8 Hz), 97.8 (C-1", J=170.89 Hz) and 99.86 (C-1, J=170.89 Hz). The α configuration of the new inter-glycosidic bond was indicated by the J_{C -1", H-1" value of 170.89 Hz. The synthetic route is illustrated in Chart 1.

AcO
$$AcO$$
 AcO AcO

Chart 1

The trisaccharide 12 was also synthesized *via* another route. Methyl 2-O-allyl-4,6-O-benzylidene-α-D-mannopyranoside (6) was obtained by the procedure of Winnik.⁸⁾ The

bromide 10 was treated with compound 6 in the presence of mercuric cyanide to give methyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 2)-O-(3,4,6-tri-O-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-2-O-allyl-4,6-O-benzylidene- α -D-mannopyranoside (12). The ¹³C-NMR data showed three anomeric carbon atoms at δ 95.6 (C-1", J=158.70 Hz), 97.8 (C-1", J=170.90 Hz) and 100.7 (C-1, J=170.90 Hz). The α configuration of the new inter-glycosidic bond was indicated by the $J_{\text{C-1'},\text{H-1'}}$ value of 170.90 Hz.⁹⁾ The ¹³C-shifts of the trisaccharides and related compounds are listed in Table I.

TABLE I. ¹³C Chemical Shifts in CDCl₃ (δ)

Carbon	Compounds								
atom	4	5	6	3	13	8	9	11	12
C-1	99.8	99.5	102.0				÷	99.9	100.7
C-2	72.1	72.1	72.8					72.6	72.0
C-3	73.8	67.7	68.8					71.1	70.6
C-4	78.3	78.1	79.4					79.0	79.0
C-5	63.7	63.3	63.3					63.4	63.9
C-6	68.7	68.7	68.5					68.6	68.6
Ph-CH	101.6	102.1	99.6					102.5	102.6
$Ph-CH_2$	69.7								
-OA11			117.8, 134.2, 78.2						118.1, 134.1, 78.5
–OMe	55.0	55.1	54.9					55.2	54.9
C-1′				101.3		96.7	90.7	97.8	97.8
C-2'				69.7		73.8	73.2	72.9	72.7
C-3′				75.6		75.2	68.9	68.9	68.9
C-4'	•			78.7		78.1	65.0	65.5	66.2
C-5′				63.3		63.7	70.5	68.9	68.2
C-6′				68.8		68.5	61.9	62.6	63.9
Ph-CH				101.5		101.5			
$Ph-CH_2$				72.8		71.5			
-OMe				54.8		54.9			
C-1''					98.1	99.0	97.1	95.8	95.6
C-2′′					56.7	54.1	54.4	54.1	54.1
C-3′′					72.1	72.2	72.0	71.3	71.3
C-4''		• *			69.4	69.2	69.6	69.5	69.4
€-5′′					71.0	70.5	70.5	70.4	70.4
C-6′′					62.2	62.2	61.9	61.2	61.2
OMe					54.7			•	

Experimental

General Methods—Melting points were determined with a Yanagimoto microapparatus and are uncorrected.

¹H-NMR spectra were recorded on a JNM MH-100 spectrometer, and the ¹³C-NMR spectra were obtained at 25.0 MHz in the pulsed Fourier-transform mode on JEOL FX-100 instruments. Optical rotations were measured with a JASCO DIP-4 digital polarimeter. Thin-layer chromatography (TLC) was conducted on precoated silica-gel plates (Merck GF-254), and the detection of compounds was achieved by quenching of ultraviolet (UV) fluorescence and with 10% sulfuric acid solution. Column chromatography was carried out using silica-gel (Merck Kieselgel 60).

Materials—Methyl 3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (3) was obtained by the procedure of Lipták et al.²⁾ Methyl 2-O-acetyl-4,6-O-benzylidene-α-D-mannopyranoside (5) was prepared from methyl 2-O-acetyl-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (4).^{6,7)} 3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl bromide was prepared according to the method of Lemieux et al.³⁾ Methyl 2-O-allyl-4,6-O-benzylidene-α-D-mannopyranoside (6) was obtained by the procedure of Winnik.⁸⁾

Methyl 3-O-Benzyl-4,6-O-benzylidene-2-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-mannopyranoside (8)—A solution of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl bromide (7) (1.5 g) in dichloromethane (7 ml) was added to a mixture of methyl 3-O-benzyl-4,6-O-benzylidene- α -D-manno-

pyranoside (3) (1 g), silver trifluoromethanesulfonate (1.5 g), 2,4,6-collidine (370 mg) and molecular sieve (4 Å) (2 g) in the same solvent (10 ml). After being stirred for 3 h at 0 °C, the mixture was filtered and the filtrate was extracted with chloroform. The chloroform extracts were washed with water, dried and concentrated to a syrup, which was chromatographed on a column of silica-gel with 5:1:1 (v/v/v) hexane–ethyl acetate–acetone as an eluent. The disaccharide fraction was collected and evaporated to dryness to give pure 8 (1.7 g, 80%), $[\alpha]_D^{22} + 22.7$ °C (c = 0.08, CHCl₃). ¹H-NMR (CDCl₃) $\delta: 1.90$ (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.06 (s, 3H, OAc), 3.17 (s, 3H, OMe), 4.66 (s, 3H, Ph-CH₂, H-1), 5.44 (d, 1H, J = 8 Hz, H-1'), 7.28 (m, 10H, arom. H), 7.76 (m, 4H, phthalimido).

1,3,4,6-Tetra-O-acetyl-2-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-mannopyranose (9)—Compound 8 (1.5 g) was dissolved in acetic anhydride (5 ml) and acetolyzed with 1% sulfuric acid in acetic anhydride (15 ml) for 12 h at room temperature. After the usual processing, the mixture was chromatographed on silica-gel with the same solvent as that used for TLC. (4:1, v/v, benzene-acetone) to give 9, $[\alpha]_D^{22} + 22.0^\circ$ (c = 0.08, CHCl₃). ¹H-NMR (CDCl₃) δ : 1.86, 1.99, 2.00, 2.02, 2.07, 2.09 (s, each 3H, OAc), 5.47 (d, 1H, J = 10 Hz, H-1'), 5.77 (d, J = 3 Hz, H-1), 7.76 (m, 4H, phthalimido). *Anal.* Calcd for $C_{34}H_{39}NO_{19}$: C, 52.29; H, 4.98; N, 1.76. Found: C, 52.33; H, 5.13; N, 1.83.

3,4,6-Tri-O-acetyl-2-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-mannopyranosyl Bromide (10)—A 25% solution of hydrogen bromide in acetic acid (6 ml) was added to a solution of 9 (0.5 g) in chloroform (6 ml) under cooling and the whole was stirred for 12 h at 0 °C. The reaction solution was poured into icewater and extracted with chloroform. The chloroform extracts were washed with water, dried and concentrated in vacuo to yield a crystalline mass (0.4 g, 82.5%). TLC (4:1, v/v, benzene-acetone): Rf 0.52.

Methyl O-(3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 2)-O-(3,4,6-tri-O-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-2-O-acetyl-4,6-O-benzylidene- α -D-mannopyranoside (11)—A solution of 10 (400 mg) in nitromethane (5 ml) was added to a mixture of methyl 2-O-acetyl-4,6-O-benzylidene- α -D-mannopyranoside (5) (210 mg), mercuric cyanide (260 mg) and molecular sieve 4 Å (200 mg) in the same solvent (5 ml). After being stirred for 24 h at 40 °C, the resulting solution was filtered and the filtrate was extracted with chloroform. The chloroform layer was washed with water and evaporated to a syrup, which was chromatographed on silica-gel using 4:1 (v/v) benzene-acetone as an eluent. The eluate containing the trisaccharide fraction was evaporated to dryness to give pure 11 (329.5 mg, 49.4%), [α] $_D^{23}$ +12.9° (c=0.43, CHCl $_3$). High mass 1029.3043 (Calcd for C $_{48}$ H $_{55}$ NO $_{24}$, 1029. 9548). ¹H-NMR (CDCl $_3$) δ : 1.84, 1.89, 1.96, 1.97 (s, each 3H, OAc), 2.03 (s, 6H, 2 × OAc), 2.15 (s, 3H, OAc), 3.39 (s, 3H, OMe), 4.61 (d, 1H, J=2 Hz, H-1'), 4.88 (s, 1H, H-1), 5.48 (d, 1H, J=11 Hz, H-1''), 5.60 (s, 1H, Ph-CH), 7.12—7.94 (m, 9H, arom. H).

Methyl O-(3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 2)-O-(3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-allyl-4,6-O-benzylidene- α -D-mannopyranoside (12)—A solution of 10 (52.5 mg) in nitromethane (4 ml) was added to a mixture of methyl 2-O-allyl-4,6-O-benzylidene- α -D-mannopyranoside⁸⁾ (200 mg), mercuric cyanide (200 mg), and molecular sieve 4 Å (200 mg) in the same solvent (4 ml). After being stirred for 24 h at 40 °C, the mixture was filtered and the filtrate was extracted with chloroform. The chloroform extracts were washed with water, dried and concentrated to a syrup, which was chromatographed on a column of silica-gel with 4:1 (v/v) benzene-acetone as an eluent. The trisaccharide fraction was collected and evaporated to dryness to give pure 12 (333 mg, 52.2%), [α] $_D^{23}$ – 4.6 ° (c = 0.02, CHCl $_3$). 1 H-NMR (CDCl $_3$) δ : 1.89, 1.94, 1.99, 2.02 (s, each 3H, OAc), 2.08 (s, 6H, 2×OAc), 3.34 (s, 3H, OMe), 4.70 (s, 1H, H-1'), 4.96 (d, J=3 Hz, H-1), 5.44 (d, 1H, J=8 Hz, H-1''), 5.60 (s, 1H, Ph-C \underline{H}), 7.38—8.00 (m, 9H, arom. H).

Acknowledgement We thank S. Kato for the ¹H-NMR and ¹³C-NMR spectral measurements.

References and Notes

- T. Hori, M. Sugita, J. Kanbayashi, and O. Itasaka, J. Biochem. (Tokyo), 81, 107 (1977); O. Itasaka and T. Hori, ibid., 85, 1469 (1979); T. Hori, M. Sugita, S. Ando, M. Kuwahara, K. Kumauchi, E. Sugie, and O. Itasaka, J. Biol. Chem., 256, 10979 (1981); T. Hori, M. Sugita, S. Ando, K. Tsukada, K. Shiota, M. Tsuzuki, and O. Itasaka, ibid., 258, 2239 (1983).
- 2) A. Lipták, I. Cźegény, J. Harangi, and P. Nánási, Carbohydr. Res., 73, 327 (1979).
- 3) R. U. Lemieux, T. Takeda, and B. Y. Chung, Synthetic Methods for Carbohydrates, ACS Symposium Series, 39, 90 (1976).
- 4) J. Sakai, T. Takeda, and Y. Ogihara, Carbohydr. Res., 95, 125 (1981).
- 5) A. Lipták, J. Imre, and P. Nánási, Carbohydr. Res., 114, 35 (1983).
- 6) V. S. Rao and A. S. Perlin, Carbohydr. Res., 83, 175 (1980).
- 7) S. Hanessian, T. J. Liak, and B. Vanasse, Synthesis, 1981, 396.
- 8) F. M. Winnik, J. R. Brisson, J. P. Carver, and J. J. Krepinsky, Carbohydr. Res., 103, 15 (1982).
- 9) K. Bock, I. Lundt, and C. Pedersen, Tetrahedron Lett., 1973, 1037; K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, 1974, 293.