Chem. Pharm. Bull. 33(2) 865-868 (1985)

Synthesis of Deuterium-Labelled 16α-Hydroxy-4-androstene-3,17dione and 16α-Hydroxydehydroepiandrosterone

MITSUTERU NUMAZAWA* and MIEKO OGATA

Tohoku College of Pharmacy, 4–1 Komatsushima-4-chome, Sendai, Miyagi 983, Japan

(Received June 4, 1984)

 16α -Hydroxy-4-androstene-3,17-dione- d_5 (4) and 3β ,16 α -dihydroxy-5-androsten-17-one- d_6 (10) were synthesized. Treatment of 16α -bromo-5-androstene-3,17-dione (2) with deuterium oxide and methanol-OD gave the 4-en-3-oxo derivative-d 3. The bromide 3 was converted into the 16α -hydroxide- d_5 4 via controlled alkaline hydrolysis using sodium hydroxide-OD in deuterium oxide-pyridine. 3β -Hydroxy-5-androsten-17-one- d_5 (8), which was obtained from 17,17-ethylenedioxy-5-androsten-3-one (5) via treatment with potassium tert-butoxide in tert-butanol-OD, followed by lithium aluminum tri-tert-butoxydeuteride reduction and then acid hydrolysis, was derivatized to the 16α -bromide 9 by treatment with cupric bromide. The bromide 9 was similarly hydrolyzed to yield the 16α -hydroxide- d_6 10.

Keywords—controlled alkaline hydrolysis; deuterium labelling; 16α -bromodehydro-epiandrosterone- d_5 ; 16α -bromoandrostenedione- d_4 ; 16α -hydroxydehydroepiandrosterone- d_6 ; 16α -hydroxyandrostenedione- d_5

We recently discovered a controlled stereospecific alkaline hydrolysis of 16-bromo-17-oxo androgens¹⁾ and also developed a hydrolytic method for the synthesis of several 16α -hydroxy-17-oxo steroids.²⁾ A stereospecific deuterium incorporation at the 16β -position of the 16α -hydroxides by hydrolysis using a medium containing deuterium oxide was also reported by us.^{2a,d)} In view of the quantitative importance³⁾ of estriol in pregnancy, it is of interest to know the concentrations of 16α -hydroxylated C_{19} steroid precursors in the feto-placental unit.

We report here an efficient synthesis of deuterium-labelled 16α -hydroxy-4-androstene-3,17-dione (4) and 16α -hydroxydehydroepiandrosterone⁴⁾ (10) with good isotopic purity. These compounds are required as carriers and internal standards for quantitative evaluation of the steroids by combined gas chromatography-mass spectrometry (GC-MS). Labelling experiments were undertaken with the intention of placing deuterium atoms at positions 2, 3, 4, 6 and 16 of the steroids, involving the controlled alkaline hydrolysis of the 16α -bromo-17-ones 3 and 9 as a key reaction.

Results and Discussion

When 16α -bromo-5- androstene-3,17-dione (2), obtained by 8 N chromic acid oxidation⁵⁾ of the corresponding 3β -hydroxide 1, was heated under reflux in deuterium oxide and diglyme according to Malhotra and Ringold,⁶⁾ a debrominated and isomerized product, 4-androstene-3,17-dione- d_6 (d_3 13%, d_4 17%, d_5 20%, d_6 50%), was unexpectedly obtained in high yield. On the other hand, the use of methanol-OD instead of diglyme in the reaction gave a deuterated and isomerized product, 16α -bromo-4-en-3-one derivative 3. The mechanism involved in the efficient debromination of the 16α -bromide 2 under the former conditions is not clear at present. However, hydrobromic acid liberated by partial decomposition of the bromide 2-4, 4- d_2 , initially produced,⁶⁾ should catalyze the isomerization of the 5-en-3-one to the 4-en-3-

one. Previous studies^{6,7)} have demonstrated that deuterium atoms are incorporated at positions 2, 4 and 6 of the product 3 by the above reaction. The labelled positions were further checked by proton nuclear magnetic resonance (¹H-NMR) analysis showing that hydrogens at the C-2 and -6 positions and hydrogen at C-4 had been exchanged for deuterium to the extents of about 50 and 80%, respectively.

HO 1 2
$$(D) R_2$$
 $R = R_1 = R_1 = R_2 = R_1$
 $R = R_2 = R_3 = R_4 = R_2 = R_3$
 $R = R_1 = R_2 = R_3 = R_4 = R_4 = R_4 = R_5 =$

Treatment of deuterio 16α -bromo-17-one 3 with $1.2\,\mathrm{eq}$ of sodium hydroxide-OD in deuterium oxide and pyridine^{2a)} gave the corresponding 16α -hydroxide 4 (d_3 16%, d_4 27%, d_5 52%, d_6 5%) with more than 98% deuterium at C-16 β in quantitative yield. Equilibration of the unsaturated ketones 3 and 4 in the basic medium might cause enrichment of the isotope contents at C-2, -4 and -6.8)

In order to obtain the 16α -hydroxy-17-one- d_6 10 having a 5-en-3 β -ol system, we initially synthesized dehydroepiandrosterone- d_5 (8) from 17,17-ethylenedioxy-5-androsten-3-one (5). Treatment of compound 5 with potassium tert-butoxide in tert-butanol-OD, followed by acetic acid protonation⁹⁾ gave the deuterio derivative 6 along with the 4-en-3-oxo isomer. The deuterated mixture was subjected to reduction with lithium aluminum tri-tert-butoxydeuteride. The product, 3β -hydroxy-17,17-ethyleneacetal- d_5 7, was then treated with acid (without isolation) to give compound 8. The yield (30%) was much improved, compared to that previously reported (4%) which was obtained using 4-en-3-one derivatives as substrates. Deuterium was also efficiently incorporated at C-2, -3 α and -4 as expected (d_2 6%, d_3 10%, d_4 25%, d_5 59%).

Bromination of the 17-oxo derivative 8 with $3 eq^{2a}$ of cupric bromide gave the 16α -bromo-17-one 9 in quantitative yield. Treatment of the bromide 9 with sodium hydroxide-OD in deuterium oxide and pyridine^{2a)} afforded the 16α -hydroxide ¹⁰ $(d_3 5\%, d_4 11\%, d_5 26\%, d_6 58\%)$ in high yield.

The structures of deuterio compounds 3, 4, 9 and 10 were confirmed by the 1 H-NMR spectra. This synthesis offers the advantage of permitting a high deuterium content without contamination by the natural form (d_0 -species). The deuterio androgens should be suitable as internal standards for mass fragmentography. A quantitative GC-MS analysis of the androgens in biological fluid is under way to further investigate their physiological importance.

Experimental

Melting points were measured on a Yanagimoto melting-point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Shimadzu IR 400 spectrometer as KBr pellets. NMR spectra were obtained with a JEOL PMX 60 spectrometer at 60 MHz with tetramethylsilane as an internal standard. Mass spectra were measured on a Hitachi RMU-7 spectrometer.

16α-Bromo-5-androstene-3,17-dione (2)—A solution of 16α -bromo-3 β -hydroxy-5-androsten-17-one (1) (1.0 g) in acetone (80 ml) was treated with 8 N chromic acid⁵⁾ (4 ml) at 0 °C for 5 min. The reaction mixture was poured into ice-water (500 ml). The precipitate was collected by filtration and crystallized from acetone to give **2** (630 mg, 63%) as colorless needles, mp 147—148 °C. IR $_{\rm max}^{\rm KBr}$ cm⁻¹: 1745 and 1710. $^{\rm 1}$ H-NMR (CDCl₃): δ 0.95 (3H, s, 18-CH₃), 1.21 (3H, s, 19-CH₃), 4.56 (1H, t, J = 8 Hz, 16 β -H), 5.40 (1H, m, 6-H). *Anal.* Calcd for C₁₉H₂₅BrO₂: C, 62.47; H, 6.90; Br, 21.87. Found: C, 62.45; H, 6.66; Br, 21.99.

Treatment of Compound 2 with D_2O —A) A solution of 2 (288 mg) in D_2O (0.7 ml) and diglyme (7 ml) was heated under reflux for 4.5 d. Water was added and the precipitate was collected by filtration and crystallized from acetone to give 4-androstene-3,17-dione- d_6 (130 mg, 45%) as colorless needles, mp 169—171 °C (lit. 10) 168—170 °C). MS: d_3 13%, d_4 17%, d_5 20%, d_6 50%.

B) A solution of 2 (312 mg) in D_2O (0.8 ml) and MeOD (10 ml) was heated under reflux for 4d. Evaporation of the solvent under reduced pressure gave a solid, which was crystallized from acetone– H_2O to give 16α -bromo-4-androstene-3,17-dione-d (3) (242 mg, 78%) as colorless needles, mp 170—171 °C (lit. 11) 172—174 °C). ¹H-NMR (CDCl₃): δ 0.98 (3H, s, 18-CH₃), 1.23 (3H, s, 19-CH₃), 2.30—2.70 (ca. 5H), 5.76 (0.2H, s, 4-H).

16α-Hydroxy-4-androstene-3,17-dione-2,2,4,6,16β- or 2,4,6,6,16β- d_5 (4)—Sodium metal (18 mg) was carefully added to a mixture of D₂O (1.5 ml) and pyridine (5.5 ml) and then 3 (242 mg) was dissolved in the solution. The mixture was allowed to stand at room temperature for 2 h. After the same work-up as reported previously,^{2d)} the crude product (200 mg) was obtained. Crystallization of the product from acetone yielded 4 (185 mg, 93%) as colorless needles, mp 187—188 °C (lit.^{2a)} 188—190 °C). ¹H-NMR (CDCl₃): δ 1.00 (3H, s, 18-CH₃), 1.21 (3H, s, 19-CH₃), 5.72 (0.2H, s, 4-H). MS: d_3 16%, d_4 27%, d_5 52%, d_6 5%.

17,17-Ethylenedioxy-5-androsten-3-one (5)—Compound 5 was synthesized according to Williams $et\ al.^{12)}$ mp 142—146 °C (lit. 12) 141—146 °C).

 3β -Hydroxy-5-androsten-17-one-2,2,3 α ,4,4- d_5 (8)—Under a nitrogen atmosphere, tert-BuOH (12 ml) was added to 5 (454 mg) and tert-BuOK (1.15 g), and the yellow solution was allowed to stand at room temperature for 2 h. Cold AcOD (22 ml, 10%) was rapidly added and the mixture was poured into ice-water. After extraction with ether (300 ml \times 2), the organic layer was washed with 5% NaHCO₃ solution and water, dried (Na₂SO₄), and evaporated to give an oily residue. Thin-layer chromatographic analysis (hexane-AcOEt, 3:1) indicated the residue to be a mixture of 5-en- and 4-en-3-oxo steroids (ca. 3:1).

LiAlD₄ (181 mg) was placed in dry tetrahydrofuran (THF) (14 ml) and the suspension was stirred in an ice bath for 10 min. While the slurry was being stirred, tert-BuOH (0.9 ml) was added dropwise, followed by the dropwise addition of a solution of the oily residue obtained above in THF (6 ml). The entire mixture was stirred for 30 min at 0 °C and for 2 h at room temperature. A few drops of water were added to decompose the excess LiAl (tert-BuO)₃D and the mixture was acidified with 10% HCl solution (10 ml) and then allowed to stand for 5 h at room temperature. The 17-oxo products were recovered by extraction with AcOEt and subjected to silica gel column chromatography (hexane–AcOEt) to give a solid, which was crystallized from acetone–H₂O to yield 8 (120 mg, 30%), mp 150—153 °C (lit. 13) 153 °C). 1H-NMR (CDCl₃): δ 0.90 (3H, s, 18-CH₃), 1.03 (3H, s, 19-CH₃), 5.43 (1H, m, 6-H). MS: d_2 6%, d_3 10%, d_4 25%, d_5 59%.

16α-Bromo-3β-hydroxy-5-androsten-17-one-2,2,3α,4,4- d_5 (9)—A solution of 8 (100 mg) in dry MeOH (10 ml) was heated under reflux for 12 h. After the same work-up as reported previously, ¹⁴ a crude product was obtained. Crystallization of the product from MeOH gave 9 (120 mg, 94%), mp 176—178 °C (lit. ¹⁴) 175—176 °C). ¹H-NMR (CDCl₃): δ 0.93 (3H, s, 18-CH₃), 1.00 (3H, s, 19-CH₃), 4.40 (1H, m, 16β-H), 5.40 (1H, m, 6-H).

3 β ,16 α -Dihydroxy-5-androsten-17-one-2,2,3 α ,4,4,16 β - d_6 (10)—Compound 9 (100 mg) was hydrolyzed with NaOD in D₂O and pyridine essentially as described for the synthesis of 4 to afford 10 (76 mg, 92%) as colorless needles, mp 187—189 °C (MeOH) (lit.^{2a)} 188—190 °C). ¹H-NMR (CDCl₃): δ 0.98 (3H, s, 18-CH₃), 1.00 (3H, s, 19-CH₃), 5.41 (1H, m, 6-H). MS: d_3 5%, d_4 11%, d_5 26%, d_6 58%.

Acknowledgment We are grateful to Professor T. Nambara and Dr. K. Shimada of Tohoku University for mass analysis.

References and Notes

- 1) M. Numazawa and Y. Osawa, J. Am. Chem. Soc., 102, 5402 (1980).
- 2) a) M. Numazawa, M. Nagaoka, and Y. Osawa, J. Org. Chem., 47, 4024 (1982); b) M. Numazawa, K. Kimura, and M. Nagaoka, Steroids, 38, 557 (1981); c) M. Numazawa, M. Nagaoka, M. Tsuji, and Y. Osawa, J. Chem.

- Soc., Perkin Trans. 1, 1983, 121; d) M. Numazawa, M. Nagaoka, and M. Ogata, Chem. Pharm. Bull., 32, 618 (1984).
- 3) For example: K. J. Ryan, "Maternal-Fetal Endocrinology," ed. by D. Tulchinsky and K. J. Ryan, W. B. Saunders Company, Philadelphia, 1980, Chapter 1.
- 4) The following trivial names have been used in this paper: 16α -hydroxydehydroepiandrosterone = 3β , 16α -dihydroxy-5-androsten-17-one, dehydroepiandrosterone = 3β -hydroxy-5-androsten-17-one.
- 5) J. Fried and J. A. Edwards, "Organic Reactions in Steroid Chemistry," Vol. I, Van Nostrand Reinhold Company, New York, 1972, p. 229.
- 6) S. K. Malhotra and H. J. Ringold, J. Am. Chem. Soc., 87, 3228 (1965).
- 7) S. K. Malhotra and H. J. Ringold, J. Am. Chem. Soc., 86, 1997 (1964).
- 8) R. H. Shapira, D. H. Williams, H. Bdzikiewicz, and C. Djerassi, J. Am. Chem. Soc., 86, 2837 (1964).
- 9) J. Diekman and C. Djerassi, J. Org. Chem., 32, 1005 (1967).
- 10) R. E. Marker, E. L. Wittle, and B. F. Tuller, J. Am. Chem. Soc., 62, 223 (1940).
- 11) F. L. Bellino, S. S. H. Gilani, S. S. Ehg, Y. Osawa, and W. Duax, Biochemistry, 15, 4730 (1976).
- 12) K. I. H. Williams, R. S. Rosenfeld, M. Smulowitz, and D. K. Fukushima, Steroids, 1, 377 (1963).
- 13) A. Butenandt and H. Dannenbaum, Z. Physiol., 229, 192 (1934).
- 14) M. Numazawa and Y. Osawa, Steroids, 32, 519 (1978).