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Some important problems in the application of multiple regression analysis (MRA) to the study
of quantitative structure-activity relationships (QSAR) are the effect of so-called collinearity
among the explaining variables on MRA and the chance correlation. In order to reduce these effects
on MRA we have here employed a combination of principal component analysis (PCA) and MRA.
Firstly all the explaining variables (x;) are normalized to the zero mean and one variance (x;),
then converted to zero correlation coefficient by using the technique of PCA. Principal component
scores pertinent to each principal component (Z,,) were next calculated, and MRA was carried out
with a linear combination of Z,,’s. Important Z,’s can easily be identified by applying the character
of zero correlation coefficient among the variables.. The above multiple regression equation is
rewritten as a linear combination of x; or x; by using the transformation matrix between Z,, and x/.
This type of equation also seems to be useful for the purpose of predicting new drug structures.
Actual calculation results are presented for some drug series. Finally, classification of the explaining
variables was done by focusing on the factor loading values of the variables.

Keywords——principal component analysis; principal component regression; multiple regres-
sion analysis; quantitative structure—activity relationship; explaining variable; classification by
factor loading; antileukemic activity; antibacterial activity; 2,5-bis(1-aziridinyl)-p-benzoquinone;
quinoline derivative

The study of quantitative structure—activity relationships (QSAR) is important in
relation to new drug research, and various kinds of approaches, such as physical, physi-
cochemical, quantum-chemical, biological, and statistical treatments, have been applied for
this purpose.®** One of the techniques frequently used in QSAR studies is multiple regression
analysis (MRA), in which a linear combination of explaining variables (x) is employed to
describe the biological activities (y: dependent variable) of drugs, as given by Eq. 1.”

p
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where , is the predicted value of the observed biological activity of the a-th drug y, and
estimated from the right-hand-side terms of Eq. 1, byx, being the constant term (x, is a
dummy variable always having the value 1). On the basis of general mechanisms of drug
activity in biological systems, various kinds of physicochemical and quantum-chemical
parameters have been proposed for x’s. Among them, log P (P: partition coefficient) or =
(Hansch—Fujita hydrophobic parameter) is the most popular as a descriptor of transport
processes.®” The accuracy and significance of § and the partial regression coefficient b; are
“usually assessed in terms of the multiple correlation coefficient (r), F-test, t-test, etc.”
However, if the variables for describing the drug transport processes and the electronic and
steric terms pertinent to the drug—receptor interactions are quite large in number compared to
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the number of test drugs, then the problem of so-called chance correlation, i.e., physically
meaningless correlation, may occur.>*®®719 Further, collinearity among the explaining
variables for MRA should be avoided.>* It is thus desirable that the extra information
quantities contained in the explaining variables employed for MRA should be removed and
the correlation among the variables should be small or zero, i.e., mutually independent
variables.>*®® 712 In order to satisfy these conditions for overcoming as far as possible the
above problems and also to make the selection and classification of the variables easier, one of
the authors (T. K.) proposed in early reviews the usefulness of the technique'® of the
combination of principal component analysis (PCA) and MRA #1113 By this approach,
important explaining variables seem to be easily selected. In this paper, actual examples of the
PCA-MRA calculation and the advantages of this technique are reported in detail and
applied to the QSAR of some drug series.

Calculation Methods

Calculation of Principal Component Analysis——Although the mathematical treatment of PCA and its
application to MRA are well known in the field of multivariate analysis in mathematics,' the actual application of
this technique to the investigation of QSAR has hardly been attempted as far as we know, except for ref. 12 (see the
later discussion). Thus, the theoretical background for PCA-MRA is dealt with briefly here to aid an understanding

of the actual calculation results (vide infra). Now, before PCA calculation the explaining variables x,, are firstly
normalized to zero mean and one variance by transforming the x;, to x;, according to Eq. 2.

x;ﬂ:(xia_ X;) ?)

\/?ii

where x,,, X;, and V;; mean the i-th explaining variable for the a-th drug, the mean value of x;, and the variance of the
variable x,, respectively. Since x;, having different dimensions are frequently employed as explaining variables in
QSAR studies, the transformation to the dimensionless x/, is very convenient from the viewpoint of interpretation of
calculation results. In addition, the variance and covariance matrix (¥) of x;, comes out equal to the correlation
matrix (R) of x,,. Resolving the determinant | R — AE| =0 under the conditions of normalization and orthogonality, we
can easily obtain the eigenvalue /,, the corresponding coefficient 1,,, and the principal component Z,,, where m runs

p
from 1 to p, p being the number of explaining variables. We can now write y,, as ¥,,= 3. l,;, and the principal

i=1
p

14
component Z,, and the score Z,, pertaining to the a-th drug of Z,, are now given by Z,,= Y. LuXiand Z,,= ) lpXl>
i=1 i=1
respectively. The Z,, is also easily rewritten as Eq.3'? by using the factor loading r,, that corresponds to the
correlation coefficient between principal component Z,, and the explaining variable x/. PCA theory also tells us that

14
Zma: A’r; vz Z rmix ;zz (3)
i=1
14 p p p
the relations, v;,= ) r2.=1, > 1hi= Doms Y. Am=p, and ¥ v;=p, should be satisfied. These mutual correlations due to
m=1 i=1 m=1 i=1

the PCA theory are important for the present purpose for the following reasons: (i) the correlation coefficient between
the scores of any two principal components Z,, and Z, becomes zero; (ii) the variance of Z,, is equal to 1, (iii)
n

(4m/p)-100 gives the percent contribution of Z, to the total information quantity p; (iv) the value Y r2;-100
m=1

gives the total contribution of Z;, Z,, - - - Z, to the information quantity of x/, i.e. 1, since the variance V(x))=1.

As is clear from the above discussion the factor loading r,,; plays an important role in PCA, and we can easily

classify the explaining variables x; on the basis of the factor loading contributing to each of the principal compo-

nents Z’s (see later sections).

Application of Principal Component Analysis to Multiple Regression Analysis Since the correlation coefficient
between the scores Z,,, and Z,, of any two principal components Z,, and Z, is zero, the application of PCA to MRA
is very useful for the actual analysis of QSAR. We can now write Eq.4 instead of Eq. 1 by taking a linear
combination of Z’s,
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p
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m=1

where a,Z, is the constant term (Z, is a dummy variables always having the value 1). Since the correlation between
any two Z’s is zero, the partial regression coefficient a,, in Eq. 4 turns out to be the same as that given by the simple
regression Eq. 5. Further, this a,, in Eq. 5 does not change with the addition of the other terms Z,, where p runs from
1 to p except m. Moreover, it is very convenient that the g, in Eq.5 is simply determined by Eq.6.! These

ﬁa:aOZO+ amZmaz (5)

S Z(Zmrz_zm) (yaz_y)
"y __a=1

= - ®
o z (Zma—zm)z
a=1

circumstances make it very useful to adopt Eq. 4 instead of Eq. 1 from the viewpoint of MRA, and the important Z
values contributing to Eq. 4 can be easily identified by focusing attention on the partial regression coefficients (a,:
m=1-—p), the factor loading of the principal component, the correlation coefficients between Z, and y and also
between y and 7, and so on."* The significance level of Eq. 4 itself and of individual partial regression coefficients can
be established by applying the so-called F-test and Students’ -test, respectively.® Usual examination based on the

above r,; and standard deviation is also very effective. In order to apply Eq. 4 to drug design, the form of Eq. | seems
to be sometimes more convenient than that of Eq. 4, since the contribution of each explaining variable to the observed
drug activity y, is easily understood from each coefficient of Eq. 1 This kind of transformation from Eq. 4 to Eq. 1 is

p
simply carried out as follows: the aforementioned relation Z,,= )" /,.x/, is introduced into the term Z,, in Eq. 4,
i=1

then the equation is rewritten as a function of x (vide infra).*®

All the calculations written in this paper were performed on NEC PC-8001 and PC-9801 personal computers.
The “basic” program pertinent to the principal component analysis was rewritten by us from that given in the
literature'> and combined with the multiple regression analysis programs used hitherto in our laboratory.

Results and Discussion

In this report on PCA-MRA calculation we will mainly deal with two examples, which
have already been described by other authors in connection with QSAR studies by MRA. One
example is the data on antileukemic activities of 2,5-bis(1-aziridinyl)-p-benzoquinones (I)
reported by Yoshimoto,!® where compounds with various substituents R; and R, were tested

for biological activities. Antileukemic activities adopted for the present computation were
those in single injection against lymphoid leukemia L-1210 in BDF, mice. Here, two kinds of
data, the minimum effective dose (MED) giving a 409/ increase in life span (ILS) compared to
the controls and the optimal dose (OD) giving maximum ILS, were subjected to PCA-MRA
calculation. For the y corresponding to the predicted value y (see Egs. 1, 4, 5), log(1/c) was
employed, ¢ (mol/kg) being the MED or OD. The parameter values pertinent to the
explaining variables x were finally listed up as MR, MR, ,=MR,+MR,, m,, m, , =7, +7,,
F=F +F, and R=R,+ R, for the total 35 and 37 compounds for MED and OD,
respectively. We applied all these data to the PCA-MRA. The details are given for the results
of OD-single injection, since the outcomes for the MED-single injection were almost the same
as those for OD. Table I shows the calculation results of eigenvalue A, principal component
Z,, and the factor loading r,,;, where CR and CCR are the information contribution ratio
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TaBLE 1. Calculation Results of Eigenvalues (4,,), Eigenvector (y,,) Corresponding
to Principal Components (Z,,), and Factor Loading (r,,;) for the Antileukemic
Activities (OD Data?) of 2,5-Bis(1-aziridinyl)-p-benzoquinones!®?
m— z A Z, Z, Z, Z,
l Ao 2.615 1.366 1.151 0.499 0.310 0.060
Eigenvectors: ¥,
X, MR, , 0.450 0.180 —0.471 ~0.119 —0.727 ~0.028
%, s 0.532 ~0.339 0.234 0.112 0.103 —0.724
X3 T, 0.450 —0.409 0.424 0.079 -0.135 0.652
Xy MR, 0.409 —0.070 —0.606 —0.101 0.637 0.212
Xs F —0.274 —0.530 —0.398 0.680 —0.154 0.002
Xe R 0.264 0.632 0.133 0.704 0.116 0.066
Factor loading: r,,;
X, MR, , 0.728 0.210 —0.505 —0.084 —0.405 —0.007
X s 0.860 ~0.397 0.251 0.079 0.057 —0.177
X3 T, 0.728 —0.477 0.455 0.056 —0.075 0.159
Xy MR, 0.661 —0.082 —0.650 —0.071 0.355 0.052
Xs F —0.443 —0.620 —-0.427 0.480 —0.086 0.001
Xe R 0.427 0.739 0.142 0.497 0.065 0.016
CR? 43.58 22.76 19.19 8.31 5.17 0.99
CCR® 43.58 66.34 85.53 93.84 99.01 100.00

a) See the text for details.

b) The notation x; means the i-th physical constant from the top given in this table. This notation is
used throughout this paper. ¢) CR=(4,/p) x 100 and CCR=(Y_ 4,,/p) x 100 mean the contribution ratio and cumulative contri-
m

bution ratio of the information quantity concerning the explaining variables, respectively. In the present case p=6.

TaBLe II.  Pearson Correlation Matrices among the Raw Data'® of Six Explaining
Variables and Those among Six Principal Components Plus log (1/c)'¢9

MR, , Ty 5 , MR, F R
Xy MR, , 1.0000
X, Ty, 0.3867 1.0000
X3 T, 0.2243 0.9018 1.0000
X4 MR, 0.6546 0.4431 0.2024 1.0000
Xs F —0.2422 —0.2093 —0.1881 —0.0290 1.0000
Xg R 0.3262 0.1505 0.0489 0.1176 —0.4749 1.0000
log (1/c) Z, zZ, Z, Z, Zs Zg
log (1/¢) 1.0000
VA —0.6004 1.0000
ZzZ, 0.3000 0.0000 1.0000
Zy 0.0575 0.0000 0.0000 1.0000
Z, —0.6242 0.0000 0.0000 0.0000 1.0000
Zs —0.0085 0.0000 0.0000 0.0000 0.0000 1.0000
Z 0.0306 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

»a) See the title and footnote 5) in Table 1.

(100-4,,/p(=6)) and the cumulative contribution ratio (100-(X4,,)/p), respectively. Table IT

lists the correlation matrices among the 6 variables before PCA and among the 6 principal
components after PCA, plus log(1/c). It is clear from Table II that the correlation between
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Tasre III. Calculation Results of Multiple Regression Analysis Applied to the Principal
Component Scores with Various Selections of Number of Principal Components”

log (1/6)? = —0.220Z, +0.152Z, +0.032Z, —0.524Z, —0.009.Z; +0.074Z; +4.724

md tn*m*l,O.OS.s\/EﬁE)
PC? s r FD CCR?
(n=m=1) 5 VA Z, A Z, Z

1—6 6 (30) 0.054 0.075 0.081 0.123 0.157 0.357 0.260 09189 27.129 100.00
1 1 (35) 0.101 0.487 0.6004 19.727 43.58
2 1 (35) 0.166 0.581 0.3000 3.460 22.76
4 1(35) 0.225 0.476 0.6242 22.342 8.31
1,2 2 (34) 0.095 0.131 0.458 0.6711 13.933 66.34
1,4 2 (34) 0.063 0.146 0.309 0.8660 51.025 51.90
2,4 2 (34) 0.127 0.211 0.446 0.6925 15.668 31.07
1,2,4 3(33) 0.052 0.072 0.119 0.251 0.9166 57.779 74.66
1—4 4 (32) 0.052 0.072 0.079 0.120 0.252 0.9184 43.076 93.84
1—4, 6 531 0.053 0.073 0.080 0.121 0.351 0.256 0.9189 33.621 94.84

a) Principal component scores are calculated based upon the results given in Table I. b) Regression equation applied to the six
principal components. Note that each coefficient is the same as that given by the simple regression equation (see the
text). ¢) Principal components used for multiple regression analysis. d) “m” is the number of principal components, and
“n—m— 17 in parentheses is the degree of freedom of the regression equation, # being the number of samples. €) “Z,_-1,0.05 -5/t
means the 95% confidence region in the t-test, the value of which is required to be less than the value of the partial regression
coefficient.®) Here, s,/c" corresponds to the estimated standard error for the coefficient.®’ ) The values of s, r, and F are for the
standard deviation, correlation coefficient, and F-value in F-test, respectively. g) See footnote ¢) in Table L.

two principal components is zero, so that the important principal components contributing to
Eq.4 are Z,, Z,, and Z,, because the correlation coefficients (r,,) of these three Z values
against log (1/c) are considerably larger than for the other Z’s. Recalling now that the above
|r,, | is equal to the r,; from Eq. 5, and also keeping in mind that the r,; of Eq. 4 is written as
the Pythagorean sum of the simple correlation coefficient r,.,'>'® the r,; for the total
contribution from ‘the above Z,, Z,, and Z, is straightforwardly calculated as
[(—0.6004)? 4 (0.3000)? + (—0.6242)*]'/>=0.9166. These results of the regression analysis as
well as those obtained from the other combination of the Z’s are listed in Table III, in which
the calculation results at 95%, confidence in the ¢-test are also given for the partial regression
coefficient. It is clear from Table III that the principal components Z,, Z,, and Z, make an
important contribution to y (log(1/c)) and the r-test is significant. However, the other Z
values (i.e. Z;, Zs, Z) are rejected in the #-test and are not so important in the prediction of y.
The r,; value pertinent to the case where Z,, Z,, and Z, are used is 0.9166 and almost the same
as the value of 0.9189 corresponding to the adoption of all the Z values. In addition, the
evaluation based on the s and F values is rather better for the former than for the latter case.
Thus, we may say that the six explaining variables used originally can be reduced to the three
principal components without changing the predictive ability for biological activity. Thus, the
information quantity (vide ante) is decreased from 100%; for all the Z’s to 74.657; for the
above three Z’s, the latter being casily divided into R=16.26% [(0.427°+0.739*>+
0.497%) x 100=97.55/6; see Table I], =, ,=15.06%, F=13.529;, m,=12.687,, MR, ,=
9.69%, and MR, =7.48%. The importance of the electronic and hydrophobic variables
is well understood. From the viewpoint of drug design, however, the transformation
from Eq.4 to Eq. 1 is also very useful and can be carried out by the technique described in
the foregoing section. The transformation equation for the present case (Eq. 7, see Table
I11) is now given by Eq. 8, which is exactly equivalent to Eq. 7 for predicting y. Here, x/1s the

log (1/c)= —0.2201Z, +0.1522Z, —0.5240Z, +4.7238 o)
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log (1/¢) = —0.0094x { —0.2273x 5 —0.2026x ; — 0.0477x

—0.3765x{—0.3307x; +4.7238 ®

i-th normalized variable according to Eq. 2; see Table I for the physical meaning pertain-
ing to the x;. Again, the importance of the F’, R’, m{,, and 7, terms is easily understood
from the corresponding regression coefficient of Eq. 8. The conversion of Eq. 8 to the one
with the original raw variables could be done by applying Eq. 2, and thus we get Eq. 9 from
Eq.8. Comparing Eq.8 with Eq.9 we can clearly see that the regression coefficients are

log (1/c) = —0.0084x, —0.1922x, —0.2252x, —0.0735x,
—3.1719x; — 1.4457x, +4.6958 ©)

quite different, particularly for the x5 and x, descriptors, although the calculated values of
log(1/c) are the same for both equations. This depends entirely on whether the explaining
variables are normalized by Eq. 2 or not. For the purpose of drug design the expression of Eq.
8 is suitable, where the important variables are directly reflected in the regression coefficients.
However, strictly speaking, Eq. 9 is a better type than Eq. 8 for calculating the log (1/c) of new
compounds before experiments, because the values of %, and \/7” in Eq.2 would alter on
adding the new compounds to the original data though the change is very small.}”

Next, let us focus attention on the so-called “eigenvalue larger than one” criterion, which
is frequently applied to PCA,'™ since the larger the eigenvalue, the larger is the information
quantity from the principal component. Very recently Lukovits!? has also reported the
application of PCA to MRA independently from us, and he emphasized the usefulness of the
above “eigenvalue larger than one” criterion. However, our calculations, including the results
in this paper, have revealed many examples where the scores pertinent to the principal
components with eigenvalues less than 1 also have a good correlation to the drug activity
log (1/c). This seems to be quite reasonable because we have applied the PCA to the explaining
variables alone, i.e. log(1/c) is excluded from PCA, so that there is a possibility of a good
correlation of log (1/c) to some principal component scores that do not have large information
quantities (vide infra). An example is the case of the application of our present method to the
QSAR data reported by Koga.'® His original treatment is as follows. In order to analyze the
antibacterial activity log (1/c) (¢: minimum inhibitory concentration) of a total of 71 samples
with various substituents at the R, R,, Ry, R, R,, and Ry positions of 1-substituted-1,4-
dihydro-4-oxo-quinoline-3-carboxylic acid derivatives (ID) he firstly selected total 50 explaining
variables including hydrophobic, electronic, and steric parameters. After various preliminary

Rs O
Rs Y OOH
R7 N’ Rz

Rs R,

II

trials he applied the stepwise method for selecting the variables in MRA by focusing attention
on the correlation coefficient to the log(1/c), the physical meaning of each variable, and the
independency between explaining variables. As a result he finally derived 11 variables, use of
which gave a good regression equation for log(1/c) with n=71, s=0.274, r=0.964. We have
now carried out MRA after applying PCA to the above mentioned 11 explaining variables.
The following results were obtained. When all 11 principal component values are taken into
the calculation of MRA the resultant 11 g,, values in Eq. 4 are all significant in the r-test at the
957 confidence level, although for a simple regression equation (Eq. 5) the a,, values passing
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the ¢-test are those for Z,, Z,, Zs, Z,, and Z,,. Note here that the principal components
having an eigenvalue larger than one are only Z,, Z,, Z,, Z,, and Zs. These results may im-
ply that there are no principal components which do not make an important contribution
to log (1/c) from the viewpoint of the s-test, and all 11 variables selécted by the above “step-
wise method” are suitable and significant, so that we cannot delete any one of the 11 vari-
ables for the purpose of the multiple regression treatment. Therefore, we may say that the
criterion of “eigenvalue larger than one” is not suitable.

Characterization of the Explaining Variables by Means of Factor Loading and Principal
Component Scores

Since the square of factor loading, r2;, corresponds to the contribution of Z,, to the
information quantity of x/, the correlation map of the factor loading values between any two
different Z,’s may permit the classification of explaining variables into groups having similar

characters. Examples are shown in Fig. 1la—c for the case of Eq. 7. Note that all the values

pr
pertinent to the explaining variables should fall into the circle of radius 1 because Y, r2,=1.

m=1

Therefore, the variables occupying positions near the circumference would make a large
contribution to the principal components used as the two axes (Z,,, Z,), since the square of the
position vector 7; from the origin to a point (r,,, r,;) in the circle is given by rZ2=r2,+r2. As
can be understood from Fig. 1a—c, the variables MR, and =, are in a closer position to MR, ,
and 7, ,, respectively, so that these two pairs of variables seem to be quite similar in nature
(see also Table II) and are mainly localized in the Z, component. On the other hand, the
variables F and R occupy quite separate positions from each other, as Fig. la—c shows,
indicating that the F and R values have quite different properties (see Table II). Also, we can
see in Fig. 1 that the F and R contribute largely to the Z,, Z,, and Z,, and in particular the
component Z, consists mainly of the F and R variables alone with the same sign.

In turn, it is also worthwhile to plot the two principal component scores Z,, and Z,, in
rectangular coordinates. The correlation coefficient between Z,, and Z,, is in principle zero, so
that the scores of Z,, and Z,, (x=1- - -n) should be scattered at random. However, if there are
extraordinarily separated points, or if the scores show some regular relationships in the figure,
which would cancel out to make zero correlation coefficient, reevaluation of the explaining
variables of the samples in question might be necessary.

In conclusion we would say that many explaining variables with physical meaning in
QSAR studies can initially be selected unless special attention is paid to the correlation among
the variables. After the variables are normalized by Eq. 2, PCA is applied to the descriptors

Zs

Z>

a b c
Fig. 1. Correlation Map of the Factor Loading Values between Two Principal
Components

a, b, and c are respectively between the two axes of Z, and Z,, Z, and Z,, and Z, and Z,
given in Table I
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x;. The scores (Z,,) of each principal component (Z,,), the factor loading (r,,), and the
transformation coefficient (y/,,) are next calculated. The multiple regression analysis is now
carried out using the Z,’s to predict the drug activity y,, then the Z,’s making an important
contribution to the MRA are identified. For the purpose of new drug design, it is convenient
to rewrite the above regression equation in the form of a linear combination of x {or x; by
employing the transformation coefficient ,,.
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log (1/¢)=—0.0198x{ —0.2746x ; —0.1395x 5 —0.0569x ; — 0.3876x ; — 0.3226x ; +4.7238 Q)
log (1/c)= —0.0177x; —0.2322x, —0.1550x; —0.0878x, — 3.2654x, — 1.4104x, +4.7554 3y

Here, Egs. 2’ and 3’ are derived from Eq. 1 by the technique described in the text. Of course, Eq. 3 agrees
completely with the one directly obtained from the MRA of the raw data given in the literature.!®
18) H. Koga, see p. 177 of ref. 4.
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