Communications to the Editor

Chem. Pharm. Bull. 33(6)2621—2623(1985)

A NOVEL AND HIGHLY STEREOSELECTIVE SYNTHESIS OF (±)-SIBIRICINE

Miyoji Hanaoka, * Masumi Kohzu, and Shingo Yasuda Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan

A novel and stereoselective synthesis of (±)-sibiricine (]), a spirobenzylisoquinoline alkaloid, from the corresponding protoberberine (3) was developed using photo-oxygenation and photo-isomerization.

KEYWORDS—— sibiricine; corydaine; sewercinine; ochrobirine; spirobenzylisoquinoline; protoberberine; stereoselective synthesis; photo-oxygenation; photo-isomerization

Sibiricine ([]), $^{1)}$ isolated from Corydalis sibirica, $^{1)}$ C. ledebouriana, $^{2)}$ and C. 'paniculigera, $^{3)}$ is a representative spirobenzylisoquinoline alkaloid having a carbonyl group and a hydroxy group trans to the N-methyl group in the five-membered ring. (\pm)-Sibiricine has been synthesized 4 , $^{5)}$ together with its diastereomer, (\pm)-corydaine (2). Although 2 has been synthesized stereoselectively, 5 , $^{6)}$ stereoselective synthesis of [] is difficult partially due to the isomerization of [] to 2 through the retro-aldol reaction. This communication describes a simple and highly stereoselective synthesis of (\pm)-sibiricine ([]) from the corresponding protoberberine (3) $^{7)}$ via four steps using photo-oxygenation and photo-isomerization as crucial steps.

Irradiation^{8,9)} of 3 with a halogen lamp in methanol containing sodium methoxide and rose bengal in a stream of oxygen at 0°C, followed by column chromatography on alumina, afforded the 8-methoxyphenolbetaine (4) [66%, m/z 365 (M^+), δ 9.06 (lH, s, C_1 -H), 4.02 (3H, s, OCH₃)]. The betaine (4) was further irradiated^{9,10)} with a mercury lamp through a Pyrex filter in methanol in a stream of nitrogen at 0°C to give the spirobenzylisoquinoline (5) [64%, mp 219-221°C, m/z 397 (M^+), ν 1715 (CO), δ 6.28 (lH, s, C_1 -H), 3.19, 3.15 (each 3H, s, OCH₃ x 2)] as a protected form of a β -diketone. The formation of 5 can be well rationalized through the intermediacy of the 8,14-cycloberbine (6), which is formed by the photo-chemical valence isomerization of 4 and then converted to 5 by the subsequent attack of

methanol at C-8.9,11)

Sodium borohydride reduction of 5 in methanol-chloroform (3:1) at 0°C gave stereoselectively the trans-alcohol (7) [100%, mp 194-196°C, m/z 384 (M⁺-15), v 3550 (OH), δ 5.10 (1H, br s, C_8 -H)], the stereochemistry of which was supported by the appearance of the C_8 -H at a lower field in its proton nuclear magnetic resonance spectrum. Treatment of 7 with 37% formaldehyde and formic acid effected N-methylation and concomitant deacetalization to provide (\pm)-sibiricine (]) [91%, mp 220-222°C (lit. \pm) mp 223-225°C), m/z 367 (M⁺), v 3550 (OH), 1710 (CO), δ 7.49, 7.01 (2H, AB-q, J=8 Hz, C_{11} - and C_{12} -H), 6.62 (1H, s, C_4 -H), 6.21, 6.18 (2H, AB-q, J=1 Hz, OCH₂O), 6.03 (1H, s, C_1 -H), 5.84 (2H, s, OCH₂O), 5.54 (1H, br s, C_8 -H), 2.36 (3H, s, NCH₂)]. Synthetic l was identical with the authentic sample.

Reduction of] with sodium borohydride 13 in methanol yielded stereoselectively (±)-sewercinine (8) [91%, mp 118-120°C, m/z 369 (M⁺), ν 3550 (OH), δ 6.86, 6.85 (2H, AB-q, J=8.5 Hz, C_{11}^- and C_{12}^- H), 6.67 (1H, s, C_4^- H), 6.20 (1H, s, C_1^- H), 6.07, 6.00 (2H, AB-q, J=1.5 Hz, OCH $_2^0$ O), 5.85 (2H, s, OCH $_2^0$ O), 5.42, 5.19 (each 1H, br s, C_8^- and C_{13}^- H), 2.59 (3H, s, NCH $_3^-$ O)]. Synthetic 8 was identical with natural sewercinine by spectral comparison.

The present synthesis of (\pm) -sibiricine (]) also amounts to a formal synthesis of (\pm) -corydaine (2) and (\pm) -ochrobirine (9), since] has been converted to 2 by isomerization⁴⁾ and 2 has been reduced to 9.⁴⁾

Thus, we have developed a novel and stereoselective synthesis of sibiricine and this method can be applied to a synthesis of any type of spirobenzylisoquinoline alkaloids.

ACKNOWLEDGEMENT We wish to thank Professor D.B. MacLean, McMaster University, Canada, and Professor M.S. Yunusov, Inst. Khim. Rastit., U.S.S.R., for a generous supply of (\pm) -sibiricine and natural sewercinine, respectively.

REFERENCES

- 1) R.H.F. Manske, R. Rodrigo, D.B. MacLean, D.E.F. Gracey, and J.K. Saunders, Can. J. Chem., <u>47</u>, 3585 (1969).
- 2) S.M. Nasirov, I.A. Israilov, L.G. Kuz'mina, M.S. Yunusov, Yu.T. Struchkov, and S.Yu. Yunusov, Khim. Prir. Soedin., 1978, 752 [Chem. Abstr., 91, 20829j (1979)].
- 3) M. Alimova, I.A. Israilov, M.S. Yunusov, N.D. Abdullaev, and S.Yu. Yunusov, Khim. Prir. Soedin., 1982, 727 [Chem. Abstr., 98, 12282ln (1983)].
- 4) B.C. Nalliah, D.B. MacLean, R.G.A. Rodrigo, and R.H.F. Manske, Can. J. Chem., 55, 922 (1977); B.C. Nalliah, D.B. MacLean, H.L. Holland, R. Rodrigo, ibid., 57, 1545 (1979).
- 5) S. McLean and D. Dime, Can. J. Chem., <u>55</u>, 924 (1977); D. Dime and S. McLean, *ibid.*, <u>57</u>, 1569 (1979).
- 6) M. Hanaoka, A. Ashimori, and S. Yasuda, Heterocycles, 22, 2263 (1984).
- 7) M. Hanaoka, M. Iwasaki, and C. Mukai, Tetrahedron Lett., 26, 917 (1985).
- 8) M. Hanaoka, C. Mukai, and Y. Arata, Heterocycles, 6, 895 (1977).
- 9) M. Hanaoka, C. Mukai, K. Nagami, K. Okajima, and S. Yasuda, *Chem. Pharm. Bull.*, 32, 2230 (1984).
- 10) M. Hanaoka and C. Mukai, Heterocycles, 6, 1981 (1977).
- 11) M. Hanaoka, S. Yasuda, K. Nagami, K. Okajima, and T. Imanishi, *Tetrahedron Lett.*, 1979, 3749.
- 12) cf. R.M. Preisner and M. Shamma, J. Nat. Prod., 43, 305 (1980).
- 13) T. Irgashev, I.A. Israilov, M.S. Yunusov, and S.Yu. Yunusov, Khim. Prir. Soedin., 1978, 536 [Chem. Abstr., 90, 23344n (1979)].

(Received April 30, 1985)