Communications to the Editor

Chem. Pharm. Bull. 33(6)2628—2631(1985)

GANODERIC ACID G AND I AND GANOLUCIDIC ACID A AND B, NEW TRITERPENOIDS FROM GANODERMA LUCIDUM $^{\rm l}$)

Tohru Kikuchi, * Satoko Matsuda, Yoshihiro Murai, and Zenichi Ogita Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan

Four new highly oxidized lanostane-type triterpenoids, ganoderic acid G and I and ganolucidic acid A and B, were isolated from the fungus ganoderma lucidum and their structures were elucidated on the basis of spectral evidence.

KEYWORDS — Ganoderma lucidum; triterpenoid; ganoderic acid G; ganoderic acid I; ganolucidic acid A; ganolucidic acid B; NMR

In the preceding communication, $^{2)}$ we reported the isolation of eleven new triterpenoids as the methyl esters and elucidated the structures of seven compounds: methyl ganoderate D, E, F, and H and methyl lucidenate D, E, and F. This communication deals with the structures of four new triterpenoids, ganoderic acid $G^{3)}$ and I and ganolucidic acid A and B, which were also obtained as the methyl esters, $\frac{1}{2}$, $\frac{2}{4}$, and $\frac{5}{2}$, respectively.

Methyl ganoderate G (1), $C_{31}H_{46}O_8$, was obtained as colorless prisms, mp 134-135°C, $\left[\alpha\right]_D$ +64° (CHCl₃), UV λ : 252.5 nm (log ϵ 4.01), IR ν : 3450, 1730, 1720, and 1660 cm^{-1} . It showed the molecular ion peak at m/z 546 and fragment peaks at m/z 375 (a), 306 (b+1), 139 (c-CH₃OH), and 129 (d) in the mass spectrum. The $^{1}\text{H-NMR}$ spectrum of 1 showed signals due to three carbinol methine protons (8 3.22, 4.38, and 4.80) along with two sec- and five tert-methyl signals, and the whole spectral pattern compared with that of methyl ganoderate B (3)4) suggested that the compound (1) may be the 12-hydroxy derivative of 3 (Table I). This was substantiated by comparison of the 13C-NMR spectrum of 1 with that of 3; i. e., the signals assignable to C-12 and C-13 in 1 markedly shifted downfield, while the signal due to C-18 shifted upfield, relative to the corresponding signals in 3 (Table II). Furthermore, in the 1 H-NMR spectrum of the triacetate prepared by acetylation of 1 , the methine proton at C-12 resonated at δ 5.69 (s), which showed ca. 10% NOE increase on irradiation at the 32-methyl protons (δ 1.42). Based on these findings, methyl ganoderate G was determined to be methyl 3β , 7β , 12β -trihydroxy-11, 15, 23-trioxo- 5α -lanost-8-en-26-oate (1).

Methyl ganoderate I (2), $C_{31}^H{}_{46}^O{}_8$, colorless prisms, mp 279-281°C, $\left[\alpha\right]_D$ +132° (CHCl $_3$), UV λ : 254.5 nm (log ϵ 3.86), IR ν : 3450, 1730, 1710, and 1660 cm $^{-1}$, showed $^1{}_{H-NMR}$ and $^{13}{}_{C-NMR}$ spectra closely similar to those of 3, except for the downfield shift of a proton singlet (δ 1.40) assignable to the 21-methyl group and $^{13}{}_{C}$ signals assignable to C-20, C-17, C-21, and C-22 (Table I and II). Therefore, methyl ganoderate I is considered to be the 20-hydroxy derivative of 3.

Table I. 1 H-NMR (200 MHz) Spectral Data of Methyl Ganoderate A (7), B (3), G (1), and I (2) and Methyl Ganolucidate A (4) and B (5) and the Tetraoxo Ester (6) (6 in CDCl 3)

Compound l _H (J)	1 ~	2 ~	3 ^{a)}	4 ~	. 5 . ~	6	7 ^{a)}
18-H ₃ s	0.88	1.14	0.99	0.91	0.89	0.96	0.98
19-Н ₃ s	1.32	1.21	1.20	1.12	1.11	1.12 ^{b)}	1.25
21-H ₃ d (6)	1.14	1.40(s)	0.99	0.86	0.84	0.98	0.88
27-H ₃ d (7)	1.19	1.19	1.17	1.18	1.18	1.19	1.18
30-H ₃ s	1.04	1.03	1.02	1.08	1.01	1.08	1.09
31-H ₃ s	0.80	0.86	0.84	1.12	0.82	1.13 ^{b)}	1.11
32-H ₃ s	1.43	1.35	1.33	1.18	1.16	1.31	1.27
COOMe s	3.68	3.71	3.67	3.70	3.68	3.70	3.68
3-н dd (10, 6)	3.22	3.22	3.21		3.25		
7-H td (8.5, 4.5)	4.80	4.80	4.80				4.80(br t)
12-H d (2.5)	4.38					 .	
15-н dd (9, 5.5)				4.41	4.39		4.63
7-OH d (4.5)	4.43	4.12	4.05				
12-OH d (2.5)	4.03						· · · · · · · · · · · · · · · · · · ·

a) See reference 4. b) Assignments may be interchanged.

Methyl ganolucidate A (4), $C_{31}^H_{46}O_6$, colorless needles, mp 192-194°C, $[\alpha]_{D}$ +188° (CHCl $_3$), UV λ : 256.5 nm (log 4.00), IR ν : 3450, 1730, 1710, and 1645 cm $^{-1}$, showed the molecular ion peak at m/z 514 and fragment ion peaks at m/z 417 (e+1), 5) 371 (f), 287 (g+1), 171 (c), 139 (c-CH $_3$ OH), and 129 (d) in the mass spectrum. The 1 H-NMR spectrum of 4 exhibited signals due to a carbinol methine (δ 4.41) and two sec-methyl and five tert-methyl groups. Its spectral pattern resembled that of methyl ganoderate A (7) except for the disappearance of another carbinol methine signal of 7 (Table I). The 13 C-NMR spectrum 4 was also closely similar to that of 7 except for the marked upfield shift of the C-7 and C-6 signals (Table II),

Table II. 13 C-NMR Spectral Data of Methyl Ganoderate A (7), B (3), G (1), and I (2) and Methyl Ganolucidate A (4), B (5), and the Tetraoxo Ester (6) (ppm in CDCl₃)

13 _C Compo	ı. <u>1</u>		2		3		4 ~	5	6	7 ~
1	34.6	t	34.9	t	34.9	t	35.1 t	34.4 t	35.1 t	35.5 t
2	27.6	t	27.8	t	27.7	t	34.2 t	28.0 t	34.1 t	34.3 t
3	78.3	d	78.4	d	78.3	d	217.7 s	78.7 d	217.8 s	217.3 s
4	38.6	s	38.9	s	38.9	s	47.0 ^{a)} s	39.0 s	44.8 s	46.8 ^{a)} s
5	49.2	d	49.2	d	49.2	d	51.7 d	51.8 d	51.4 d	48.7 ^{b)} d
6	26.9	t	26.7	t	26.7	t	18.7 t	17.4 t	18.6 t	29.0 t
7	66.2	d	66.9	d	66.9	d	29.6 t	30.4 t	29.2 t	68.9 d
8 .	157.4	s	156.6	s	156.9	s	163.2 s	162.9 s	160.3 s	159.3 s
9	141.9	s	142.3	s	142.7	S	138.6 s	140.0 s	139.3 s	140.1 s
10	38.4	s	38.7	S	38.7	S	37.1 s	37.8 s	37.5 s	38.0 s
11	199.3	s	197.8	s	197.8	s	198.1 s	198.3 s	197.0 s	199.6 s
12	77.9	d	50.7	t	50.3	t	51.7 t	52.1 t	49.8 ^{a)} t	51.7 t
13	51.9	s	45.7	s	45.3	s	46.8 ^{a)} s	47.2 s	47.0 s	46.6 ^{a)} s
14	60.3	s	59.7	s	59.4	s	53.6 s	53.5 s	57.9 s	54.0 s
15	216.8	s	217.7	s	217.4	S	72.9 d	73.0 d	212.4 s	72.4 d
16	38.4	t	36.1	t	40.9	t	38.6 t	38.7 t	40.8 t	36.2 t
17	45.8	d	.49.3	d	45.6	d	48.7 d	48.7 d	45.0 d	48.1 ^{b)} d
18	12.0	q	19.0	q	17.4	q	17.2 q	17.1 q	17.0 q	17.3 q
19	18.8	q	18.4	q	18.5	q	18.8 ^{b)} q	18.8 ^{a)} q	18.9 q	19.5 ^{c)} q
20	28.7	d	73.0	s	32.0	d	32.6 d	32.5 d	32.0 d	32.7 d
21	21.4	q	26.7	q	19.7	q	19.4 q	19.4 q	19.6 q	19.6 ^{c)} q
22	48.4	t	52.7	t	49.1	t	49.6 t	49.7 t	49.3 ^{a)} t	49.7 t
23	208.1	S	210.4	s	207.7	S	208.3 s	208.3 s	207.8 s	208.4 s
24	46.4	t	47.7	t	46.8	t	46.8 t	46.8 t	46.8 t	46.8 t
25	34.6	d	34.5	d	34.7	d	34.7 d	34.6 d	34.7 d	34.6 d
26	176.1	s	175.9	s	176.1	S	176.2 s	176.1 s	176.1 s	176.3 s
27	17.1	q	17.0	q	17.1	q	17.1 q	17.1 q	17.1 q	17.1 q
30	28.1	q	28.2	q	28.2	q	27.8 q	28.3 q	27.8 q	27.4 q
31	15.4	q	15.5	q	15.5	q	20.6 __ q	15.7 q	20.6 q	20.7 q
32	23.1	q	24.8	q	24.4	q	19.0 ^{b)} q	19.0 ^{a)} q	23.2 q	19.4 ^{c)} q
осн3	51.9	q	52.0	q	51.9	q	51.9 q	51.9 q	51.9 q	52.0 q

a), b), c) Assignments may be interchanged in each compound.

suggesting that methyl ganolucidate A $(\frac{4}{2})$ may be the 7-deoxo derivative of methyl ganoderate A $(\frac{7}{2})$.

Oxidation of 4 with CrO $_3$ in AcOH afforded the tetraoxo ester (6), C $_{31}$ H $_{44}$ O $_6$, which showed the M $^+$ peak at m/z 512 together with fragment ion peaks at m/z 415 (6 e+1), 5) 350, 341 (6 a), 287 (6 g+1), 171 (6 c), 139 (6 c-CH $_3$ OH), and 129 (6 d). The 13 C-NMR spectrum of 6 compared with that of methyl ganoderate E (8 d) indicated the apparent absence of oxygenic functional group at the C-7 position. Based on these data, methyl ganolucidate A was determined to be methyl 15 6 c-hydroxy-3,11,23-trioxo-5 6 c-lanost-8-en-26-oate (4).

Methyl ganolucidate B ($\frac{5}{2}$), $C_{31}H_{48}O_6$, colorless needles, mp 167-169°C, $[\alpha]_D$ +114° (CHCl $_3$), showed UV, IR, 1 H-NMR, and 1 C-NMR spectra similar to those of $\frac{4}{2}$, except for a double doublet due to a methine proton ($\frac{5}{2}$ 3.25) and several signals arising from the ring-A carbons (Table I and II). In the mass spectrum of $\frac{5}{2}$, the molecular ion peak appeared at m/z 516 and significant fragment ion peaks were observed at m/z 373 ($\frac{5}{2}$), 289 ($\frac{5}{2}$ +1), 171 ($\frac{5}{2}$), 139 ($\frac{5}{2}$ -CH $_3$ OH), and 129 ($\frac{5}{2}$). Finally, oxidation of $\frac{5}{2}$ with CrO $_3$ -AcOH gave the tetraoxo compound ($\frac{5}{2}$), identical with the sample ($\frac{5}{2}$) prepared by oxidation of $\frac{5}{2}$. Thus, the structure of methyl ganolucidate B was assigned to the formula $\frac{5}{2}$.

REFERENCES AND NOTES

- 1) A part of this work was presented at the 105th Annual Meeting of the Pharmaceutical Society of Japan, Kanazawa, April 1985, Abstr., p.496.
- 2) T. Kikuchi, S. Matsuda, S. Kadota, Y. Murai, and Z. Ogita, *Chem. Pharm. Bull.*, 33, 2624 (1985).
- 3) H. Nakamura, S. Ishihara, M. Uchida, Y. Komoda, H. Kohda, and K. Yamazaki, The 105th Annual Meeting of the Pharmaceutical Society of Japan, Kanazawa, April 1985, Abstr., p. 496.
- 4) T. Kubota, U. Asaka, I. Miura, and H. Mori, Helv. Chim. Acta, 65, 611 (1982).
- 5) These MS peaks were tentatively assigned to the fragment (e+1).

(Received May 2, 1985)