Notes

Chem. Pharm. Bull. 33(9)3993—3997(1985)

Quinones and Related Compounds in Higher Plants. XXI.¹⁾ New Findings on the Proton and Carbon-13 Nuclear Magnetic Resonance Spectra of Shikonin

KENICHIRO INOUE, MASAKO AKAJI (née KAWASAKI) and HIROYUKI INOUYE*

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan

(Received November 6, 1984)

Inspection of the proton and carbon-13 nuclear magnetic resonance (¹H- and ¹³C-NMR) spectra of shikonin (1), cycloshikonin (9) and their derivatives led to the conclusion that, in solution, they exist neither as a semihydroquinone structure nor as tautomeric structures as reported recently, but as the commonly accepted 2-substituted 5,8-dihydroxy-1,4-naphthoquinone structure. Further, these compounds were shown to assume a comformation which allows the C-3 hydrogen and the O-functional group of the side chain to be in close proximity.

Keywords—shikonin; acetylshikonin; deoxyshikonin; cycloshikonin; tautomerism; ¹H-NMR; ¹³C-NMR

Although the structures of shikonin and its antipode alkannin, occurring in various Bignoniaceous plants, are known to be 1a and 2a,²⁻⁴⁾ respectively, two proposals were recently made regarding their structures in solution. The one presented by Papageorgiou⁵⁾ was based on the proton nuclear magnetic resonance (¹H-NMR) spectral findings that the signal pattern (singlet at δ 7.17) of three aromatic protons of alkannin (2) differed from those observed in 2-substituted 1,4-naphthoquinones, i.e. acylalkannins including acetylalkannin (3) (a doublet (J=1.1 Hz) due to the C-3 proton at δ 6.96 and a singlet due to the C-6 and C-7 protons at δ 7.19) and deoxyalkannin (4) (a triplet (J = 1.1 Hz) due to the C-3 proton at δ 6.83 and a singlet due to the C-6 and C-7 protons at δ 7.19). This difference was suggested to be attributable to the disturbance of the electronic equilibrium of the quinonoid ring of 2 through the hydrogen bond between the hydroxy group of the side chain and C-1 carbonyl group. Therefore, alkannin was presumed to exist predominantly in a semihydroquinone structure (2b). The other proposal, by Sankawa et al., 6) was based on the view of Moore and Scheuer⁷⁾ that the appearance of the ¹H-NMR signals of all carbon-linked protons of naphthazarin (5) as a sole singlet at δ 7.13 can be explained in terms of rapid tautomerism of the naphthazarin system (5a, 5b, 5c and 5d) in solution. In an extension of this view to alkannin (2) and cycloalkannin (6), the former being said to show two singlets due to tautomeric quinonoid protons at δ 7.04 and 7.12 and the latter at δ 7.12 and 7.14,80 it was assumed that both quinones 2 and 6 also exist as such tautomers.

By measurement of the 200 MHz 1 H-NMR spectrum (CDCl₃) of shikonin (1), however, we have ascertained that its C-3 proton appears as a sharp doublet (J=1.1 Hz) at δ 7.16, whereas the C-6 and C-7 protons appear as a singlet at δ 7.19. Based on decoupling experiments, the doublet nature of the former signal was further ascribed to an allylic coupling of the C-3 hydrogen with the proton on the hydroxy-bearing C-11.9 It was therefore assumed that, contrary to the aforementioned proposals, 1a represents the preferred structure

TABLE I. ¹H-NMR Data for Shikonin Derivatives^{a)}

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	16)	4	8	6	(96	10	11	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H-3	7.16 d	7.19 d		p 66.9	1	7.07 d	1	7.41 brs	7.06 brs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.1)	(1.5)		(1.1)		(1.5)			,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9-H	7.19 s	7.29 s		7.18 s		7.13 s		7.09 s	7.081 s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H-7	7.19 s	7.29 s		7.18 s		7.13 s		7.09 s	7.084 s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H-11	4.91 ddd	5.00 dddd		6.02 ddd		5.07 dd		5.14 brt	`
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.1, 4.4, 7.3)	(1.5, 4.0, 4.8, 7.0)		(1.1, 4.8, 7.0)		(1.5, 6.6)			
	H-12	2.35 br td	2.31 br td		2.47 td	(1	2.49—2.65 m		_	{2.25—2.62 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(7.3, 14.7)	(7.3, 14.7)		(7.3, 14.7)				-	
(4.4, 7.3, 14.7) 5.20 qut 5.20 qut (1.1, 7.5) (1.5, 7.3) (1.5, 7.	H-12	2.65 ddd	2.55—2.67 m		2.63 ddd	_			1.85 brs	
5.20 qut 5.32 qut 5.18 qut 5.12 qut (1.5, 7.3) (1.5, 7.		(4.4, 7.3, 14.7)			(4.8, 7.3, 14.7)		`			
$ \begin{bmatrix} (1.1, 7.5) & (1.5, 7.3) & (1.5, 7.3) & (1.5, 7.3) & (1.5, 7.3) & (1.5, 7.3) & (1.5, 7.3) & (1.5, 7.3) & (1.5, 7.3) & (1.5.7.4.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3) & (1.5.7.4.3.3.3) & (1.5.7.4.3.3.3) & (1.5.7.4.3.3.3) & (1.5.7.4.3.3.3.3) & (1.5.7.4.3.3.3.3) & (1.5.7.4.3.3.3.3.3) & (1.5.7.4.3.3.3.3.3.3) & (1.5.7.4.3.3.3.3.3.3.3) & (1.5.7.4.3.3.3.3.3.3.3) & (1.5.7.4.3.3.3.3.3.3.3.3) & (1.5.7.4.3$	H-13	5.20 qut		5.18 qut	5.12 qut	ユ	1.81—1.94 m	5.02 qut		5.13 qut
1.65 brs 1.58 brs 1.60 brs 1.61 brs 1.35 s 1.35 s 1.34 s 1.34 s 1.37 s 1.37 s 1.38 s 1.38 s 1.38 s 1.37 s 1.38 s 1.37 s 1.38 s 1.38 s 1.37 s 1.38 s 1.38 s 1.37 s 1.38 s 1.		(1.1, 7.5)		(1.5, 7.0)	(1.5, 7.3)		•	(1.5, 7.3)	_	(1.5, 7.1)
1.65 brs 1.58 brs 1.60 brs 1.63 brs 1.34 s 1.34 s 1.34 s 1.54 brs 1.70 brs 1.70 brs 1.242 s 1.242 s 1.258 s 12.42 s 12.58 s	H-13	1			·	_				
1.76 brs 1.67 brs 1.70 brs 1.38 s 1.37 s 1.66 brs 1.38 s 1.248 s 12.46 s 12.47 s 12.50 s 12.50 s 12.51 s 12.	H ₃ -15	1.65 br s	1.58 br s	1.60 br s	1.63 brs]1.36 s]1.33 s	1.53 brs]1.34 s	[1.55 brs
12.48 s 12.46 s 12.45 s 12.50 s 12.42 s	H ₃ -16	[1.76 brs	1.67 brs	[1.70 br s]	1.70 brs	[1.38 s	[1.37 s	1.66 brs	1.38 s	[1.69 brs
12.58 s 12.55 s 12.55 s 12.51 s 12.42 s	OH-5	12.48 s	12.46 s	12.47 s	[12.42 s	12.50 s	12.42 s			, [
Ac — 4.53 d — — — — — — — — — — — — — — — — — —	8-HO	12.58 s	[12.55 s	[12.62 s	[12.58 s	12.51 s	12.42 s	J	1	Ī
(4.8) 2.14 s — 2.04 s — 2.36 s — 2.375 s 2.36 s — 2.38 s 2.37 s 2.38 s	OH-11		4.53 d		.	,	-	- Company		
			(4.8)							
	Alc. OAc	Î		ļ	2.14 s	na pagamana and and and and and and and and and	1	2.04 s		ĺ
2.37 s 2.38 s	Phen. OAc	1	1		1	ĺ		2.375 s	2.36 s	2.37 s
								2.384 s	2.37 s	2.40 s
2.42 s								2.40 s	2.38 s	
								2.42 s		

a) The spectra were run at 200 MHz in CDCl₃ unless otherwise specified, with Me₄Si as an internal standard. Symbols are as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; qu, quintet; m, multiplet. Figures in parentheses are coupling constants in Hz. b) Measured in acetone-d₆.

5:R=

-H

TABLE II. 13C-NMR Data for Shikonin Derivatives

No. of carbon	Compound				
	1	4	8	9	
1	179.66 s	182.83 s	176.65 s	181.27 s	
2	151.47 s	151.45 s	148.34 s	152.93 s	
3	131.91 d	134.49 d	131.50 d	131.74 d	
4	180.44 s	182.83 s	178.13 s	182.19 s	
5	165.73 s	163.10 s	167.60 s	164.05 s	
6	132.35 d	131.84 ^{b)} d	132.91 ^{d)} d	131.33^{f}) d	
7	132.35 d	130.87 ^{b)} d	132.74 ^{d)} d	131.23^f) of	
8	165.09 s	162.44 s	167.06 s	163.54 s	
9	112.09^{a} s	111.97 ^{c)} s	111.90 ^{e)} s	112.11 ^{g)} s	
10	111.60^{a} s	111.72 ^{c)} s	111.63 ^{e)} s	111.65 ^{g)} s	
11	68.43 d	26.61 t	69.55 d	74.39 d	
12	35.73 t	29.70 t	32.91 t	33.47 t	
13	118.54 d	122.40 d	117.73 d	38.48 t	
14	137.27 s	133.59 s	136.10 s	82.10 s	
15	18.07 q	17.78 q	17.95 q	27.83 q	
16	25.91 q	25.64 q	25.76 q	28.68 q	
Acetyl CO			169.69 s		
Acetyl CH ₃			20.94 q		

a—h) Values with the same superscript may be interchanged.

of shikonin in solution, which is in line with the original view of Moore and Scheuer⁷⁾ that the principal tautomer of 2-ethylnaphthazarin (7) in solution is 7a.

Subsequently, in order to rationalize the unusual low field shift of the C-3 proton of 1, the ¹H-NMR spectra of congeneric quinones, deoxyshikonin (4), acetylshikonin (8) and cycloshi-

3996 Vol. 33 (1985)

konin (9), were also inspected. It was found that the C-3 protons of 1, 8 and 9, each having a C-11 O-functional group, resonate 0.32, 0.15 and 0.37 ppm downfield as compared with the signal (triplet (J=1.1 Hz) at δ 6.84) of 4, whereas two aromatic hydrogens at C-6 and C-7 of the four quinones have essentially the same chemical shifts (δ 7.18—7.25) (Table I). Thus, the low field shift of the C-3 protons of the quinones 1, 8 and 9 was interpreted in terms of the deshielding effect of the C-11 O-function. This explanation was further supported by the evidence that the C-3 protons of the leucoacetates 10 and 11 (δ 7.23 and 7.41) derived from the quinones 1 and 9 resonate 0.17 and 0.35 ppm downfield, respectively, relative to the corresponding proton (δ 7.06) of the leucoacetate 12 of deoxyshikonin (4). These results lead to an unequivocal conclusion that shikonin (1) exists in solution as the 2-substituted 5,8dihydroxy-1,4-naphthoquinone structure 1a rather than as the structure 1b or the tautomeric structures 1a, 1b, 1c and 1d, and also that it assumes a conformation allowing the C-3 hydrogen to be in close proximity to the C-11 hydroxy group (within deshielding range). This is also the case for cycloshikonin (9). The carbon-13 nuclear magnetic resonance (13C-NMR) spectral data for 1, 8 and 9 (Table II) are also in accord with this conclusion. 10) Naphthazarin (5), the basic skeleton of the above quinones, is reported to show only one signal at δ 173 due to carbonyl carbons and hydroxy bearing carbons. This finding indicates rapid equilibration between its tautomeric structures (5a, 5b, 5c and 5d). The spectra of shikonin (1), acetylshikonin (8) and cycloshikonin (9), however, show signals of carbonyl carbons between δ 176—182 and those of hydroxy-bearing aromatic carbons around δ 165, ruling out the tautomeric structures.

Experimental

All melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. ¹H-NMR spectra and ¹³C-NMR spectra were measured on a JEOL-FX-200 spectrometer in CDCl₃ with tetramethyl-silane (TMS) as an internal standard. The following materials were used for NMR measurements.

Shikonin (1), mp 143—144 °C, $[\theta]_{258}$ — $[\theta]_{308}$ = 7750, containing 19% alkannin (2).

Deoxyshikonin (4), mp 90—91 °C, was isolated from cell cultures (M-231a strain) of *Lithospermum erythrorhizon* SIEB. *et* ZUCC. (Boraginaceae).¹³⁾

Acetylshikonin (8), mp 108-109 °C, $[\theta]_{352}-[\theta]_{467}=8580$, was isolated from cell cultures of *Echium licopsis* L. (Boraginaceace) and was optically pure.¹⁴⁾

Cycloshikonin (9), mp 87—88.5 °C, was derived from the above shikonin (1).¹⁴⁾

Shikonin leucoacetate (10), mp 152 °C, deoxyshikonin leucoacetate (12), mp 146—148 °C, and cycloshikonin leucoacetate (11), mp 222—224 °C were prepared in the usual way from the above compounds 1, 4 and 8, respectively.

References and Notes

- 1) Part XX: K. Inoue, S. Ueda, H. Nayeshiro, N. Moritome and H. Inouye, Phytochemistry, 23, 313 (1984).
- 2) R. Majima and C. Kuroda, Acta Phytochem., 1, 43 (1922).
- 3) H. Brockmann, Justus Liebigs Ann. Chem., 521, 1 (1936).
- 4) H. Arakawa and M. Nakazaki, Chem. Ind. (London), 1961, 947.
- 5) V. P. Papageorgiou, *Planta Med.*, **37**, 185 (1979).
- 6) U. Sankawa, H. Otsuka, Y. Kataoka, Y. Iitaka, A. Hoshi and K. Kuretani, Chem. Pharm. Bull., 29, 116 (1981).
- 7) R. E. Moore and P. J. Scheuer, J. Org. Chem., 31, 3722 (1966).
- 8) They measured the spectrum of 2 in acetone- d_6 and that of 6 in CDCl₃.
- 9) The NMR spectra of 1 in CDCl₃ solution showed no significant shift of the signals of the C-3, C-6 and C-7 protons on varying the concentration or on the addition of a trace of HCl. On the other hand, in acetone- d_6 solution, a doublet (J=1.5 Hz) due to the C-3 proton at δ 7.19 and a singlet due to the C-6 and C-7 protons at δ 7.29 were observed.
- 10) Papageorgiou obtained essentially the same values for alkannin derivatives. Cf. V. P. Papageorgiou, Planta Med., 40, 305 (1980). We assigned the two quinone carbonyl signals of shikonin (1) based on the fact that the C-1 with a higher chemical shift shows long range coupling $(^{3}J_{\text{C-H}}=9.8\,\text{Hz})$ with the C-3 hydrogen.
- 11) It was confirmed that the quinone 5 exists at low temperature (-160 °C) as a tautomeric structure 5a (=5c) by means of ¹³C-NMR measurement in the crystalline state. Cf. W.-I. Shian, E. N. Duesler, I. C. Paul, D. Y.

- Curtin, W. G. Blann and C. A. Fyfe, J. Am. Chem. Soc., 102, 4546 (1980).
- 12) M. Kobayashi, Y. Terui, K. Tori and N. Tsuji, Tetrahedron Lett., 1976, 619.
- 13) M. Tabata, H. Mizukami, N. Hiraoka and M. Konoshima, Phytochemistry, 13, 927 (1974).
- 14) H. Inouye, H. Matsumura, M. Kawasaki, K. Inoue, M. Tsukada and M. Tabata, *Phytochemistry*, 20, 1701 (1981).