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Reaction of 2-cyclohexen-1-ones (3a-c) with tert-butyldimethyl-
silyl triflate and triethylamine gave selectively cross-conjugated
dienol ethers (4a-c) except 3-methyl-2-cyclohexen-1-one (3d). Reaction
of 6-(5-ethoxycarbonyl-3,3~-dimethyl-4-pentenyl-1)-2-cyclohexen-1-one
(10) under the same reaction conditions gave rise to annelation
affording to tricyclo[5.2.2.01’S]undecenes (11) along with the through-
conjugated dienol ether (12).
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In the course of our study on the intramolecular double Michael reaction,1’2)

we were interested in the generation of the cross-conjugated silyl dienol ethers

from conjugated enones. It is known that such dienes are useful substrates for

3)

the Diels-Alder reaction. The formation of cross-conjugated dienolate anions by

o '-deprotonation of enones with lithium dialkylamides under kinetically control-
led conditions, followed by silylation, is a useful method for the regioselective

4-6) When the reaction

formation of 2-silyloxy-1,3-dienes from conjugated enones.
was applied to the o ,8-unsaturated enone esters (1), the double Michael reaction
occurred spontaneously affording, in highly stereoselective manner, the tricyclic
compound (2L1) We further studied the reaction of conjugated enones with tert-

7,8)

butyldimethylsilyl triflate in the presence of triethylamine and here report

the findings.
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Reaction of 2-cyclohexen-1-ones (3a-c) and 1-acetyl-1-cyclohexene (6) with
1.1 mole equivalent of tert-butyldimethylsilyl triflate and 1.5 mole equivalent
of triethylamine in dichloromethane for 5 min at ambient temperature produced

quantitatively 2-silyloxy-1,3-dienes (4a—c)9) and (7),9)

respectively. The struc-
5-7) and the Diels-

Alder reaction with maleic anhydride. The cycloaddition was carried out in

tures of the products were determined by 1H—NMR spectroscopy

dichloromethane for 16-~24 h at ambient temperature to give the adducts (Sa—c)g)
9)
and (8)

respectively. The endo structures of the the products, each obtained as a single

in 74%, 77%, 83%, and 82% overall yields from the corresponding enones,

isomer, were deduced on consideration of the reaction mechanism. The formation of
the silyl enol ethers (5a-c) by the cycloaddition suggested the structure of the
cross-conjugated dienol ether, since the through-conjugated dienol ether would
give the bicyclo[2.2.2]octane having the silyloxy group at the angular position.
On the other hand, 3-methyl-2-cyclohexen-1-one (3d) gave a mixture of 4d and 97’9)
in a ratio of 5 : 6 under the same reaction conditions as above. Treatment of the
mixture with maleic anhydride in dichloromethane for 20 h at room temperature

afforded the single adduct (5d)9) in 40% overall yield from 3d.
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The above method offers a convenient way to synthesize the 041+_

rather stable cross-conjugated silyl dienol ether by the simple |

manipulation performed under mild and not so strict anhydrous

conditions as in the case of lithium dialkylamide and the silyl

chloride. (9)
Surprisingly, when the reaction was applied to 6-(5-ethoxycarbonyl-3,3-di-

methyl-4-pentenyl-1)-2-cyclohexen-1-one (10),2)

two diastereoisomers of the tri-
cyclic compound (11) were created. Namely, the reaction of 10 with 1.1 mole
equivalent of tert-butyldimethylsilyl triflate and 1.5 mole equivélent of tri-
ethylamine in dichloromethane for 5 min at ambient temperature formed three pro-
1,5]_

undecene (11) was obtained in 37% yield as a mixture of two stereoisomers in the

ducts. After medlum pressure chromatography on silica gel, tricyclo[5.2.2.0

ratio of about 3 : 2 along with the through-conjugated silyl dienol ether (12)9)
in 45% yield. Treatment of the mixture (11) with 10% perchloric acid in tetra-
hydrofuran for 1 h at ambient temperature, followed by chromatographic separation,
2) and (14)9) in 55% and 33% yields, respectively. On the
reaction of boron trifluoride etherate with 12 in dichloromethane for 1 h at room

gave two ketones (13)
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temperature, the conjugated enone (10) and the deconjugated enone (15)9) were
obtained in 54% and 45% yields, respectively.

The formation of the tricyclo[S.ZJLO1’s]undecenes (11) could be regarded as
an intramolecular double Michael reaction catalyzed by tert-butyldimethylsilyl
triflate. The intramolecular Diels-Alder reaction of the cross-conjugated dienol
ether could be ruled out for the following reason. The reaction of 10 with tert-
butyldimethylsilyl triflate in the presence of excess trimethylamine in dichloro-
methane at -78°C for 6 h and at room temperature for 1 h gave the cross-conjugated
dienol ether (16).9) No formation of 11 and 12 was detected on the basis of 1H—
NMR analysis. The silyl ether (16) was isolated in 37% yield along with the
starting enone (10) and converted into the mixture of 13 and 14 in low yield when
treated with boron trifluoride etherate.
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