Chem. Pharm. Bull. 34(1) 406-408 (1986)

Studies on the Nepalese Crude Drugs. VI.¹⁾ On the Flavonoid Constituents of the Root of Scutellaria discolor COLEBR. (2)²⁾

TSUYOSHI TOMIMORI,*,^a YUKINORI MIYAICHI,^a YOSHITAKA IMOTO,^a HARUHISA KIZU^a and TSUNEO NAMBA^b

School of Pharmacy, Hokuriku University, ^a 3 Ho, Kanagawa-machi, Kanazawa 920–11, Japan and Research Institute for Wakan-Yaku, Toyama Medical and Pharmaceutical University, ^b 2630, Sugitani, Toyama 930–01, Japan

(Received June 19, 1985)

From the root of *Scutellaria discolor* COLEBR., two new flavones (I and II) were isolated together with pinocembrin, 7-hydroxy-5,8-dimethoxyflavone, 5,7,4'-trihydroxy-8-methoxyflavone, 5,7,2'-trihydroxy-8,6'-dimethoxyflavone and norwogonin 7-O- β -D-glucuronopyranoside. Compounds I and II were identified as 7-hydroxy-5,8,2'-trimethoxyflavone and 5,7-dihydroxy-8,2',6'-trimethoxyflavone, respectively, based on spectral and chemical data.

Keywords—Scutellaria discolor; Labiatae; flavonoid; 7-hydroxy-5,8,2'-trimethoxyflavone; 5,7-dihydroxy-8,2',6'-trimethoxyflavone; pinocembrin; 7-hydroxy-5,8-dimethoxyflavone; 5,7,4'-trihydroxy-8-methoxyflavone; 5,7,2'-trihydroxy-8,6'-dimethoxyflavone; norwogonin 7-O- β -D-glucuronopyranoside

In the previous paper,¹⁾ we reported the structural identification of ten flavonoids which were isolated from the root of *Scutellaria discolor* COLEBR. collected in Central Nepal. In our further studies on the constituents of this plant, two new flavones (I and II) and five known flavonoids (III-VII) were isolated. The present paper deals with their structural determination.

Compounds I-VII showed positive color reactions to Mg-HCl, and had absorption bands assignable to hydroxyls, conjugated carbonyl groups and aromatic rings in the infrared (IR) spectra.

Compound I was obtained as pale yellow needles, mp $249\,^{\circ}\text{C}$ (dec.), $C_{18}H_{16}O_{6}$. The ultraviolet (UV) spectrum and diagnostic shift suggested the presence of a hydroxyl at the C-7 position and the absence of a chelated hydroxyl at the C-5 position in the flavone nucleus.³⁾ The proton nuclear magnetic resonance (H¹-NMR) spectrum of I showed the presence of three methoxyls (3.78, 3.82, 3.93 ppm), one hydroxyl (10.55 ppm) and one C-3 proton (6.66 ppm). In the aromatic region of the spectrum, there were a singlet (1H, 6.48 ppm) and a multiplet (4H, 7.08—7.86 ppm) attributable to the A- and the B-ring protons, respectively. Methylation of I with CH_2N_2 yielded a monomethyl ether (Ia), mp $187\,^{\circ}C$, $C_{19}H_{18}O_{6}$, FeCl₃ (–), which was identical with 5,7,8,2′-tetramethoxyflavone¹⁾ prepared from skullcapflavone I (5,2′-dihydroxy-7,8-dimethoxy-flavone)⁴⁾ by Kuhn's methylation.⁵⁾

From these results, the sturcture of I was identified as 7-hydroxy-5,8,2'-trimethoxy-flavone. This was further supported by its carbon nuclear magnetic resonance (13 C-NMR) spectrum, in which the signal patterns of the A-ring and of the B-ring were almost identical with those of 7-hydroxy-5,8-dimethoxyflavone (V) 6,7d) and 5,7-dihydroxy-8,2'-dimethoxyflavone, 6 respectively.

Compound II was obtained as pale yellow needles, mp 206 °C (dec.), C₁₈H₁₆O₇. Bathochromic shifts in the UV spectrum caused by addition of diagnostic reagents suggested

the presence of a 5,7-dihydroxy system in II.³⁾ The ¹H-NMR spectrum of II showed the presence of three methoxyls [3.72 ppm (3H), 3.80 ppm (6H)], one hydroxyl (10.50 ppm), one chelated hydroxyl (12.51 ppm) and one C-3 proton (6.34 ppm). In the aromatic region of the spectrum, the remaining four protons appeared as a singlet (1H, 6.28 ppm), a doublet (2H, 6.83 ppm, J=8.3 Hz) and a triplet (1H, 7.52 ppm, J=8.3 Hz). The latter three signals could be assigned to C-3′, 5′ and C-4′ protons, respectively, from their chemical shifts and coupling patterns. These results indicate II to be a 5,7-dihydroxy-2′, 6′-dimethoxyflavone derivative with one methoxyl at the C-6 or C-8 position in the A-ring. Methylation of II with CH₂N₂ gave a monomethyl ether (IIa), mp 199 °C (dec.), $C_{19}H_{18}O_7$, FeCl₃ (+), which was identical with 5-hydroxy-7,8,2′, 6-tetramethoxyflavone prepared from rivularin (5,2′-dihydroxy-7,8,6′-trimethoxyflavone)⁸⁾ by partial methylation with CH₂N₂.

Compound II was, therefore, identified as 5,7-dihydroxy-8,2′, 6′-trimethoxyflavone. This was further supported by the ¹³C-NMR spectrum of II, in which the signal patterns of the Aring and of the B-ring were almost superimposable on those of wogonin (5,7-dihydroxy-8-methoxyflavone)⁷⁾ and IIa, respectively.

Compounds III—VII are known flavonoids and were identified as pinocembrin, 9 7-hydroxy-5,8-dimethoxyflavone, 6,7d 5,7,4'-trihydroxy-8-methoxyflavone, $^{10,11a)}$ 5,7,2'-trihydroxy-8,6'-dimethoxyflavone and norwogonin 7-O- β -D-glucuronopyranoside, 12 respectively, by direct comparison with authentic samples.

Experimental¹³⁾

Isolation—"Fractions 3—7" and "n-BuOH-soluble fraction," described in the previous paper,¹⁾ were further examined. "Fraction 3" was subjected to chromatography on silica gel [solvent: benzene–CHCl₃ (1:1)] to give II (30 mg) and III (5 mg). "Fraction 6" was chromatographed on silica gel [solvent: CHCl₃–MeOH–H₂O (100:2:0.1)] to give V (4 mg) and VI (5 mg). "Fraction 7", containing a mixture of two flavonoids, was chromatographed on silica gel with benzene–AcOEt (100:12) to give I (10 mg) and IV (3 mg). The n-BuOH-soluble fraction was chromatographed on silica gel [solvent: AcOEt–acetone–H₂O (5:4:0.5)] to give VII (10 mg).

I (7-Hydroxy-5,8,2'-trimethoxyflavone) — Pale yellow needles (MeOH), mp 249 °C (dec.). *Anal.* Calcd for $C_{18}H_{16}O_6$: C, 65.85; H, 4.91. Found: C, 65.74; H, 4.88. MS m/z (%): 328 (M+, 80), 313 (M+-CH₃, 100). Mg-HCl (+). Rf: 0.18 (TLC-1), ¹⁴⁾ 0.05 (TLC-2). ¹⁴⁾ UV λ_{max}^{MeOH} nm (log ε): 225 sh (4.35), 270 (4.42), 331 (4.11); $\lambda_{max}^{MeOH-NaOMe}$ nm (log ε): 230 sh (4.37), 280 (4.50), 320 (4.02), 370 (4.02); $\lambda_{max}^{MeOH-AlCl_3}$ nm (log ε): 225 sh (4.41), 270 (4.47), 331 (4.19); $\lambda_{max}^{MeOH-AlCl_3-HCl}$ nm (log ε): 225 sh (4.40), 270 (4.45), 299 sh (4.15), 331 (4.15), 355 sh (4.16); $\lambda_{max}^{MeOH-NaOAc}$ nm (log ε): 279 (4.47), 320 (3.99), 370 (4.00); $\lambda_{max}^{MeOH-H_3BO_3-NaOAc}$ nm (log ε): 273 (4.42), 327 (4.06). IR ν_{max}^{KBr} cm⁻¹: 3100 (OH) 1630 (conjugated CO), 1600, 1580 (arom. C = C).

¹H-NMR: 3.78, 3.82, 3.93 (each 3H, each s, -OCH₃ × 3), 10.55 (1H, br s, 7-OH), 6.66 (1H, s, 3-H), 6.48 (1H, s, 6-H), 7.86 (1H, dd, J = 7.6, 1.7 Hz, 6'-H), 7.48—7.65 (1H, m, 4'-H), 7.24 (1H, br d, J = 7.8 Hz, 3'-H), 7.08—7.24 (1H, m, 5'-H).

¹³C-NMR: 157.7 (C-2), 112.7 (C-3),176.0 (C-4), 155.1 (C-5), 96.8 (C-6), 155.6 (C-7), 129.0 (C-8), 152.1 (C-9), 107.4 (C-10), 120.0 (C-1'), 157.5 (C-2'), 112.6 (C-3'), 132.6 (C-4'), 121.0 (C-5'), 128.7 (C-6'), 60.9 (C-8-OCH₃), 55.9 (C-5,2'-OCH₃).

Methylation of I: An MeOH–Et₂O (3:2) solution (3 ml) of I (5 mg) was treated with ethereal CH₂N₂ (1 ml) for a short time. After removal of the solvent, the residue was chromatographed on silica gel (10 g) using CHCl₃ as an eluent and recrystallized from MeOH to give Ia (yield 3 mg) as colorless needles, mp 187 °C. *Anal.* Calcd for C₁₉H₁₈O₆: C, 66.66; H, 5.30. Found: C, 66.78; H, 5.31. MS m/z (%): 342 (M⁺, 90), 327 (M⁺ – CH₃, 100). Mg–HCl (+), FeCl₃ (−). *Rf*: 0.40 (TLC-1),¹⁴⁾ 0.08 (TLC-2).¹⁴⁾ UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 238 sh (4.21), 269 (4.50), 336 (4.19). No change was observed when the spectrum was determined in the presence of NaOMe, AlCl₃, AlCl₃–HCl, or NaOAc. IR $\nu_{\rm max}^{\rm KBF}$ cm⁻¹: no OH, 1630 (conjugated CO), 1590, 1570 (arom. C=C). ¹H-NMR: 3.81, 3.88, 3.93, 3.99 (each 3H, each s, –OCH₃×4), 6.69 (2H, s, 3,6-H), 7.87 (1H, dd, J=7.7, 1.6 Hz, 6′-H), 7.48—7.66 (1H, m, 4′-H), 7.24 (1H, br d, J=8.6 Hz, 3′-H), 7.08—7.24 (1H, m, 5′-H). ¹³C-NMR: 157.7 (C-2), 112.6 (C-3), 176.1 (C-4), 155.8 (C-5), 93.7 (C-6), 156.5 (C-7), 130.0 (C-8), 151.4 (C-9), 107.9 (C-10), 119.8 (C-1′), 157.7 (C-2′), 112.6 (C-3′), 132.7 (C-4′), 120.9 (C-5′), 128.7 (C-6′), 60.9 (C-8-OCH₃), 55.9 (C-2′-OCH₃), 56.3 (C-5,7-OCH₃). Ia was identical (TLC, UV, IR, ¹H- and ¹³C-NMR, mixed fusion) with 5,7,8,2′-tetramethoxyflavone¹⁾ prepared from 5,2′-dihydroxy-7,8-dimethoxyflavone (skullcapflavone I)⁴⁾ by Kuhn's methylation.⁵⁾

II (5,7-Dihydroxy-8,2',6'-trimethoxyflavone) ——Pale yellow needles (MeOH), mp 206 °C (dec.). *Anal.* Calcd for $C_{18}H_{16}O_7$: C, 62.79; H, 4.68, Found: C, 62.96; H, 4.66, MS m/z (%): 344 (M⁺, 48), 329 (M⁺ – CH₃, 100). Mg–HCl (+). Rf: 0.45 (TLC-1),¹⁴⁾ 0.37 (TLC-2).¹⁴⁾ UV λ_{max}^{MeOH} nm (log ε): 267 (4.42), 310 sh (3.92), 350 sh (3.72); $\lambda_{max}^{MeOH-NaOMe}$ nm (log ε): 277 (4.48), 335 sh (3.86), 360 (3.90); $\lambda_{max}^{MeOH-AICl_3}$ nm (log ε): 277 (4.40), 300 sh (4.10), 326 (3.93), 395 (3.72);

 $\lambda_{\text{max}}^{\text{MeOH-AlCl}_3-\text{HCl}}$ nm (log ε): 278 (4.41), 300 sh (4.11), 324 (3.91), 395 (3.72); $\lambda_{\text{max}}^{\text{MeOH-NaOAc}}$ nm (log ε): 277 (4.45), 330 sh

(3.84), 360 (3.88); $\lambda_{\text{max}}^{\text{MeOH-H}_3\text{BO}_3-\text{NaOAe}}$ nm (log ε): 270 (4.37), 341 (3.78). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300, 3100 (OH), 1650 (conjugated CO), 1610, 1580 (arom. C=C). ¹H-NMR: 3.72 (3H, s, 8-OCH₃), 3.80 (6H, s, 2′,6′-OCH₃), 12.51 (1H, s, 5-OH), 10.50 (1H, br s, 7-OH), 6.28 (1H, s, 6-H), 6.34 (1H, s, 3-H), 7.52 (1H, t, J=8.3 Hz, 4′-H), 6.83 (2H, d, J=8.3 Hz, 3′,5′,-H).

¹³C-NMR: 161.2 (C-2), 112.2 (C-3), 182.0 (C-4), 156.5 (C-5), 99.2 (C-6), 157.4 (C-7), 127.8 (C-8), 150.6 (C-9), 103.8 (C-10), 110.3 (C-1'), 158.3 (C-2',6'), 104.5 (C-3',5'), 133.0 (C-4'), 60.9 (C-8-OCH₃), 56.1 (C-2',6'-OCH₃).

Methylation of II : II (7 mg) was methylated with CH₂N₂ in the same manner as in the case of methylation of I to give IIa (5 mg) as pale yellow needles (MeOH), mp 199 °C (dec.). *Anal.* Calcd for C₁₉H₁₈O₇: C, 63.68; H, 5.06. Found: C, 63.42; H, 5.07. MS m/z (%): 358 (M⁺, 46), 343 (M⁺ – CH₃, 100). Mg–HCl (+), FeCl₃ (+). *Rf*: 0.77 (TLC-1),¹⁴) 0.31 (TLC-2).¹⁴) UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 266 (4.48), 338 (3.84); $\lambda_{\text{max}}^{\text{MeOH}-\text{NaOMe}}$ nm (log ε): 267 (4.47), 365 (3.72); $\lambda_{\text{max}}^{\text{MeOH}-\text{AlCl}_3}$ nm (log ε): 276 (4.48), 300 sh (4.16), 323 (3.98), 400 (3.83); $\lambda_{\text{max}}^{\text{MeOH}-\text{AlCl}_3}$ -HCl nm (log ε): 276 (4.48), 300 sh (4.17), 320 (3.97), 400 (3.84); $\lambda_{\text{max}}^{\text{MeOH}-\text{NaOAc}}$ nm (log ε): 266 (4.47), 338 (3.83); $\lambda_{\text{max}}^{\text{MeOH}-\text{H}_3\text{BO}_3-\text{NaOAc}}$ nm (log ε): 266 (4.52), 338 (3.90). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 1650 (conjugated CO), 1600, 1580 (arom. C = C). ¹H-NMR: 3.70, 3.92 (each 3H, each s, –OCH₃×2), 3.80 (6H, s, 2′,6′-OCH₃), 12.63 (1H, s, 5-OH), 6.32 (1H, s, 3-H), 6.62 (1H, s, 6-H), 7.52 (1H, t, *J*=8.3 Hz, 4′-H), 6.83 (2H, d, *J*=8.3 Hz, 3′,5′-H). ¹³C-NMR: 161.7 (C-2), 112.2 (C-3), 182.2 (C-4), 157.0 (C-5), 96.2 (C-6), 158.7 (C-7), 128.6 (C-8), 149.9 (C-9), 104.1 (C-10), 110.2 (C-1′), 158.3 (C-2′,6′), 104.6 (C-3′,5′), 133.1 (C-4′), 61.0 (C-8-OCH), 56.5 (C-7-OCH₃), 56.2 (C-2′,6′-OCH₃). IIa was identical (TLC, UV, IR, ¹H- and ¹³C-NMR, mixed fusion) with 5-hydroxy-7,8,2′,6′-tetramethoxyflavone prepared from rivularin (5,2′-dihydroxy-7,8,6′-trimethoxyflavone⁸⁾ by methylation with CH₂N₂.

Identification of III—VII——III (mp 195 °C (dec.)), IV (mp 290 °C), V (mp 302 °C), VI (mp 266 °C) and VII (mp 245 °C (dec.)) were identified as pinocembrin, 7-hydroxy-5,8-dimethoxyflavone, 5,7,4'-trihydroxy-8-methoxyflavone, 5,7,2'-trihydroxy-8,6'-dimethoxyflavone and norwogonin 7-O- β -D-glucuronopyranoside, respectively, by direct comparisons with authentic specimens (TLC, UV, IR, 1 H-and 1 3C-NMR, mixed fusion).

Acknowledgement We are grateful to Dr. N. P. Manandhar, Botanical Survey and Herbarium section, Department of Medicinal Plants, Ministry of Forests, His Majesty's Government of Nepal, for his identification of *Scutellaria discolor* Colebr., and to Mrs. R. Igarashi and Miss H. Shimomura of this university for elemental analysis and El mass measurement. This work was supported in part by a Grant-in-Aid (No. 58041031) for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References and Notes

- 1) Part V: T. Tomimori, Y. Miyaichi, Y. Imoto, H. Kizu and T. Namba, Chem. Pharm. Bull., 33, 4457 (1985).
- 2) Presented at the 105th Annual Meeting of the Pharmaceutical Society of Japan, Kanazawa, April 1985.
- 3) T. J. Mabry, K. R. Markham and M. B. Thomas, "The Systematic Identification of Flavonoids," Springer-Verlag, New York, 1970, Chapter V.
- 4) M. Takido, K. Yasukawa, S. Matsuura and M. Iinuma, Yakugaku Zasshi, 99, 443 (1979).
- 5) R. Kuhn, Angew. Chem., 67, 32 (1955).
- 6) T. Tomimori, Y. Miyaichi, Y. Imoto and H. Kizu, Shoyakugaku Zasshi, 38, 249 (1984).
- 7) a) S. Hattori, Acta Phytochim. (Japan), 5, 99 (1930); b) Idem, ibid., 5, 219 (1931); c) Idem, Yakugaku Zasshi, 51, 15 (1931); d) R. C. Shah, C. R. Mehta and T. S. Wheeler, J. Chem. Soc., 1938, 1555.
- 8) C. J. Chou, J. Taiwan Pharm. Assoc., 30, 36 (1978).
- 9) F. Bohlmann, L. Dutta, H. Robinson and R. M. King, Phytochemistry, 18, 1889 (1979).
- 10) S. R. Gupta, T. R. Seshadri, C. S. Sharma and N. D. Sharma, Indian J. Chem., 13, 785 (1975).
- 11) a) T. Tomimori, Y. Miyaichi and H. Kizu, *Yakugaku Zasshi*, **102**, 388 (1982); b) T. Tomimori, Y. Miyaichi, Y. Imoto, H. Kizu and Y. Tanabe, *ibid.*, **104**, 524 (1984).
- 12) J. E. Watkin, Abstracts of Papers, Toronto, Aspects Plant Phenolic Chem., Proc. Symp., 3rd, 1963, p. 39.
- 13) The instruments used to obtain the physical data were the same as described in the previous paper.¹⁾
- 14) Thin layer chromatography (TLC) was carried out on Kieselgel 60 F_{2.54} (Merck) with the following solvent systems: CHCl₃-MeOH-H₂O-AcOH (100:4:0.2:0.1) (TLC-1), *n*-hexane-acetone-AcOH (60:40:0.1) (TLC-2).