Chem. Pharm. Bull. 34(1) 82-87 (1986) ## Studies on the Constituents of Palmae Plants. III.^{1a)} The Constituents of *Chamaerops humilis* L. and *Trachycarpus wagnerianus* BECC.²⁾ Yasuaki Hirai, Shuichi Sanada, Yoshiteru Ida, and Junzo Shoji* School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142, Japan (Received May 30, 1985) The constituents of the leaves, stems and underground parts of Chamaerops humilis L. and Trachycarpus wagnerianus BECC. (Palmae) have been investigated. We isolated and identified methyl proto-dioscin and methyl proto-Pb from the stems, dioscin, Pb, methyl proto-dioscin, methyl proto-Pb and methyl proto-rhapissaponin from the underground parts, and tricin 7-O-rutinoside and methyl proto-Pb from the leaves of C. humilis L. On the other hand, we isolated and identified methyl proto-dioscin and pseudoproto-dioscin from the stems, Pb, Tg, methyl proto-Pb and pseudoproto-Pb from the underground parts, and glucoluteolin, scolymoside, methyl proto-Pb and pseudoproto-Pb from the leaves of T. wagnerianus BECC. This is the first report of the isolation of tricin T-O- β -rutinoside, Tg and pseudodiosgenin oligosides from Palmae plants, and also the first discovery of pseudosteroidal saponin from natural sources. **Keywords**—Chamaerops humilis; Trachycarpus wagnerianus; Palmae; steroidal saponin; pseudoproto-diosgenin; diosgenin; pennogenin; flavone glycoside; luteolin; tricin In the previous paper¹⁾ we reported the isolation and structure elucidation of steroidal glycosides and flavonoids from Palmae plants, *Trachycarpus fortunei* (HOOK.) H. WENDL., *Rhapis exelsa* HENRY, and *R. humilis* BL. A series of chemotaxonomical studies on plants of the Palmae family has been undertaken by us, and the present paper is mainly concerned with studies on the constituents of *Chamaerops humilis* L. and *Trachycarpus wagnerianus* BECC. The habitat of C. humilis L. (Japanese name: Chabotojuro) is the Mediterranean coast, and only a few plants are cultivated in Japan, for ornamental purposes. The constituents of this plant were investigated by Williams $et\ al.^{3)}$ and they reported the isolation of leucoanthocyanidin, flavone C-glycoside, tricin and tricin 5-O-glycoside from the leaves, and rutin, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside and caffeylshikimic acid from the flowers. Monache $et\ al.^{4)}$ also reported the isolation of (+)-epicatechin and two kinds of procyanidins from the fruits, and Panizo and Pinar⁵⁾ reported the isolation of diosgenin from the leaves and roots. On the other hand, the habitat of T. wagnerianus BECC. (Japanese name: Tojuro) is the middle southern region of China. This plant is widely cultivated in Japan as an ornamental plant, but it has been used as a tonic, hemostatic and antidiarrheic crude drug in Chinese medicine. As regards the constituents of T. wagnerianus BECC., only the presence of leucoanthocyanins has been reported.⁶⁾ The leaves, stems and underground parts of *C. humilis* L. harvested in Tokyo in July 1982, were separately chopped and extracted with methanol at room temperature. The methanol extract was separated into three fractions, namely ether-soluble, butanol-soluble and water-soluble fractions. The butanol-soluble fraction of the leaves was chromatographed on a Sephadex LH-20 column eluted with methanol to yield two fractions, of which one gave a positive Ehrlich reaction⁷⁾ on a thin layer chromatographic (TLC) plate (Fr. 1) and the other gave a positive ferric chloride reaction (Fr. 2). A compound, tentatively named Cl_2 , was isolated from Fr. 1 by silica gel column chromatography and another compound named Cl_1 was isolated from Fr. 2 by Avicel column chromatography. The butanol-soluble fraction of the stems was treated in the same way as described for the leaves, and two compounds tentatively named Cst_1 and Cst_2 were isolated. Furthermore, the butanol-soluble fraction of the underground parts was treated by the same method as described above, and five compounds tentatively named Cu_1 , Cu_2 , Cu_3 , Cu_4 and Cu_5 were isolated. The leaves, stems and underground parts of T. wagnerianus BECC. harvested in Tokyo in June 1983, were separately chopped, extracted and fractionated by the same procedures as described in the case of C. humilis. Four compounds named Tl_1 , Tl_2 , Tl_3 and Tl_4 from the butanol-soluble fraction of the leaves, two compounds named Tst_1 and Tst_2 from that of the stems, and four compounds named Tu_1 , Tu_2 , Tu_3 and Tu_4 from that of the underground parts were isolated. Chart The identities of Cu₁ with dioscin,¹⁾ Cu₂ and Tu₁ with Pb,¹⁾ Cst₁, Cu₃ and Tst₁ with methyl proto-dioscin,¹⁾ Tl₃, Tu₃, Cl₂, Cst₂ and Cu₄ with methyl proto-Pb,¹⁾ Cu₅ with methyl proto-rhapissaponin,^{1b)} Tl₁ with glucoluteolin,¹⁾ and Tl₂ with scolymoside¹⁾ were demonstrated by infrared (IR) and ¹³C-nuclear magnetic resonance (¹³C-NMR) spectral com- parisons of these compounds with authentic samples reported in the previous papers. Among the constituents of the underground parts of T. wagnerjanus, Tu_2 was positive in the Liebermann–Burchard reaction and it showed characteristic absorption bands of a 25(R)-spiroketal moiety in the IR spectrum.⁸⁾ On hydrolysis with $2\,\mathrm{N}$ hydrochloric acid in 50% dioxane, Tu_2 gave glucose and rhamnose as sugar components. Based on the $^{13}\mathrm{C-NMR}$ spectrum of Tu_2 , which showed four anomeric carbon signals at δ 100.5, 102.0, 102.3, 103.1 and three C_6 -carbon signals of rhamnose at δ 18.4, 18.6, 18.8, the sugar moiety of Tu_2 was elucidated to have the same structure as that of Tu_1 (Pb), which consists of diosgenin, one glucose and three rhamnoses. However, some of the carbon chemical shifts of the steroidal aglycones of Tu_1 and Tu_2 , namely C_{12} , C_{13} , C_{14} , C_{16} , C_{17} , C_{20} , and C_{21} , differed by 3—7 ppm from each other. Concerning the C_{17} -carbon signals of Tu_1 and Tu_2 , a doublet signal of the former appeared at δ 63. 1ppm, while the latter showed a singlet signal at δ 90.2 ppm. Based on the $^{13}\mathrm{C-NMR}$ analysis, Tu_2 was deduced to be pennogenin glycoside and, finally, Tu_2 was identified as Tg^{9}) by comparing its $^{13}\mathrm{C-NMR}$ spectrum with that of an authentic sample. Tst₂ was suggested to be a furostanol derivative by the Liebermann–Burchard reaction and the Ehrlich reaction. On hydrolysis with 2 n hydrochloric acid in 50% dioxane, Tst₂ gave glucose and rhamnose as sugar components. The 13 C-NMR spectrum of Tst₂ showed four anomeric carbon signals at δ 100.4, 102.0, 102.9 and 104.8 ppm and two C₆-carbon signals of rhamnose at δ 18.4 and 18.6 ppm. Based on the foregoing data, Tst₂ was suggested to be a furostanol glycoside having a sugar moiety made up of two moles each of glucose and rhamnose, *i.e.*, the same components as those of Tst₁ (=methyl proto-dioscin). The 13 C-NMR signal pattern of the sugar moiety of Tst₂ agreed well with that of Tst₁. As regards the aglycones, the former showed C₂₀ and C₂₂ carbon signals at δ 40.5 and 112.7 ppm, but the latter showed olefinic carbon signals due to C₂₀ and C₂₂ at δ 103.6 and 152.6 ppm, respectively. Based on the 13 C-NMR analysis, Tst₂ was deduced to be a pseudo-derivative of proto-dioscin. Finally, Tst₂ was identified as pseudo-protodioscin by comparing the IR and 13 C-NMR spectra with those of an authentic sample derived from methyl proto-dioscin by refluxing in acetic acid. Tl_4 (= Tu_4), like Tst_2 , was positive in the Liebermann–Burchard reaction and the Ehrlich reaction. On hydrolysis with 2 N hydrochloric acid in 50% dioxane, Tl_4 gave glucose and rhamnose as sugar components. The 13 C-NMR spectrum of Tl_4 showed five anomeric carbon signals at δ 100.6, 102.1, 102.4, 103.2 and 104.9 ppm and three C_6 -carbon signals of rhamnose at δ 18.5, 18.7 and 18.9 ppm. By comparing the 13 C-NMR spectra of Tl_4 and methyl proto-Pb (= Tl_3 , Tu_3), which was isolated from the leaves and the underground parts of T. wagnerianus and is a furostanol glycoside having the same sugar components as Tl_4 , it was proved that the structure of the sugar moiety of Tl_4 is the same as that of methyl proto-Pb, and that of the aglycone is the same as that of pseudoproto-dioscin. Consequently, Tl_4 was confirmed to be identical with pseudoproto-Pb derived from methyl proto-Pb by refluxing in acetic acid, based on comparisons of the IR and 13 C-NMR spectra. This is the first report of the isolation and structure elucidation of pseudo-type steroidal glycoside from natural sources. Cl_1 , isolated from the leaves of *C. humilis*, was obtained as pale yellow needles. Based on the color reactions with ferric chloride reagent and with magnesium-hydrochloric acid reagent and analysis of the ¹³C-NMR spectrum, which showed two anomeric carbon signals at δ 100.0 and 100.6 ppm, Cl_1 was deduced to be a flavonoidal *O*-glycoside. Furthermore, the ¹H-NMR spectrum of Cl_1 showed an AB quartet at δ 6.49 and 6.87 ppm ($J=2\,\text{Hz}$), a singlet at δ 7.05 ppm, a singlet corresponding to two equivalent protons at δ 7.36 ppm, and two equivalent *O*-methyl signals at δ 3.58 ppm. Based on the NMR analyses, Cl_1 was suggested to be a tricin bioside, and this was supported by hydrolysis of Cl_1 with 10% sulfuric acid to afford tricin, glucose and rhamnose. Further comparison of the ¹³C-NMR spectra of Cl_1 and scolymoside (= Tl_2 , luteolin 7-*O*-rutinoside) suggested that the sugar moieties of these compounds might be identical. The ultraviolet (UV) spectrum of Cl_1 indicated the presence of a 5-hydroxyl group, since a bathochromic shift was observed on the addition of aluminum chloride, and the position of rutinose was suggested to be at C_7 , because no bathochromic shift was observed on addition of sodium acetate. Consequently, the structure of Cl_1 was concluded to be tricin 7-O- β -rutinoside.¹⁰⁾ In this paper the isolation and structure elucidation are reported of a diosgenin oligoside, namely Pb, two proto-diosgenin bisdesmosides, methyl proto-dioscin and methyl proto-Pb, one pennogenin oligoside, Tg, two pseudoproto-diosgenin bisdesmosides, pseudoproto-dioscin and pseudoproto-Pb, and two flavone glycosides, glucoluteolin and scolymoside, from *T. wagnerianus*, as well as two diosgenin oligosides, namely dioscin and Pb, three proto-diosgenin bisdesmosides, methyl proto-rhapissaponin, methyl proto-dioscin and methyl proto-Pb, and one flavone glycoside, tricin 7-*O*-rutinoside, from *C. humilis*. Tricin 7-*O*-β-rutinoside isolated from *C. humilis* has not been found in *T. fortunei* (HOOK.) H. WENDL., *T. wagnerianus*, *Rhapis excelsa* HENRY, or *R. humilis* BL. hitherto studied. Almost all of the constituents of *Trachycarpus wagnerianus* are identical with those of *T. fortunei* (HOOK.) H. WENDL. except Tg, pseudoproto-dioscin and pseudoproto-Pb, which have not been isolated from the latter. This is the first report of the isolation of pseudoproto-diosgenin bisdesmosides from natural sources. ## Experimental All melting points were determined on a Yanagimoto micro-melting point apparatus (hot-stage type) and are uncorrected. The optical rotations were measured with a JASCO DIP-140 polarimeter. The IR spectra were recorded with a Hitachi EPI-2 and the UV spectra were recorded with a Hitachi 340 spectrophotometer. The NMR spectra were recorded with a JEOL JNM-FX 100 (100 MHz for 1 H-NMR and 25 MHz for 13 C-NMR) and the chemical shifts are given on a δ (ppm) scale with tetramethylsilane as an internal standard. TLC was performed on precoated Kieselgel 60 F_{254} plates (Merck) using CHCl₃-MeOH-H₂O (7:3:0.4, v/v), and detection was achieved by spraying 10% H₂SO₄ or Ehrlich reagent followed by heating or by spraying ferric chloride reagent. Gas-liquid chromatography (GLC) was run on a Shimadzu GC-6A unit equipped with a flame ionization detector. Extraction and Isolation of the Compounds from the Leaves, Stems and Underground Parts of Chamaerops humilis L. and Trachycarpus wagnerianus BECC.—I-1) Leaves of C. humilis: The fresh leaves (1.8 kg) were chopped and extracted with MeOH $(5 \text{ l} \times 3)$ at room temperature. The MeOH extract was evaporated to dryness in vacuo. The residue (486 g) was suspended in water (1 l) and partitioned with ether $(500 \text{ ml} \times 3)$. The ether layer was concentrated in vacuo to afford the ether extract (71 g), and the aqueous layer was partitioned with BuOH saturated with water $(500 \text{ ml} \times 3)$. The BuOH layer was concentrated under reduced pressure to afford the BuOH extract (31 g). The BuOH extract was subjected to column chromatography on Sephadex LH-20 with MeOH to afford two fractions, Fr. 1 (10.0 g) and Fr. 2 (28.2 g). Fr. 1 was subjected to column chromatography on silica gel with CHCl₃-MeOH-H₂O (75:25:3, v/v) to provide the fraction rich in Cl_2 , which was refluxed with MeOH (50 ml) for 2 h on a water bath. Then the solution was concentrated to 5 ml under reduced pressure. The concentrate was mixed with 200 ml of AcOEt and the precipitate was collected by filtration and dried to afford Cl_2 (0.3 g). Fr. 2 was subjected to column chromatography on Avicel with CHCl₃-MeOH-H₂O (8:1.5:1, v/v); lower layer) followed with (7:2:1, v/v); lower layer), (7:2.5:1, v/v); lower layer) and MeOH to yield four fractions (Fr. 1—Fr. 4). Fr. 2 was purified by repeated recrystallization to afford pure Cl_1 (0.1 g). I-2) Stems of *C. humilis*: Extraction and isolation of the compounds from the fresh stems (13.0 kg) were carried out according to procedure I-1 to afford MeOH extract (1.0 kg), ether extract (29 g) and BuOH extract (68 g). Cst₁ (0.4 g) and Cst₂ (2.0 g) were isolated from Fr. 1 of the BuOH extract. I-3) Underground Parts of C. humilis: The fresh underground parts (5.6 kg) were treated as described above to afford MeOH extract (230 g), ether extract (40 g) and BuOH extract (47 g). Cu₁ (0.04 g), Cu₂ (0.01 g), Cu₃ (0.3 g), Cu₄ (2.6 g) and Cu₅ (0.3 g) were isolated from Fr. 1 of the BuOH extract. II-1) Leaves of T. wagnerianus: The fresh leaves (6.1 kg) were treated according to procedure I-1 to afford MeOH extract (661 g), ether extract (92 g) and BuOH extract (41 g). The BuOH extract was subjected to column chromatography on Sephadex LH-20 with MeOH to provide two fractions, namely a fraction containing Tl₃ and Tl₄ (20.3 g) and a fraction containing Tl₁ and Tl₂ (18.1 g). The former fraction was subjected to column chromatography on ODS with 50% MeOH to afford two fractions, namely a fraction rich in Tl₃ and a fraction rich in Tl₄. Each fraction was purified by column chromatography on Sephadex LH-20 with MeOH. The respective eluates were refluxed for 2 h on a water bath and concentrated to 5 ml under reduced pressure. The concentrates were each mixed with 200 ml of AcOEt and the precipitate was collected by filtration to afford Tl_3 (0.4 g) and Tl_4 (0.1 g), respectively. The latter fraction, a fraction containing Tl_1 and Tl_2 , was rechromatographed on Sephadex LH-20 with MeOH to provide two fractions, namely Fr. A and Fr. B. Each fraction was purified by repeated crystallization from aq. MeOH to afford pure Tl_2 (0.4 g) from Fr. A and Tl_1 (0.2 g) from Fr. B, respectively. II-2) Stems of *T. wagnerianus*: The fresh stems (35 kg) were treated according to procedure I-2 to afford MeOH extract (3.4 kg), ether extract (68 g) and BuOH extract (313 g). The BuOH extract was purified according to procedure II-1 to provide Tst₁ (32.0 g) and Tst₂ (8.0 g). II-3) Underground Parts of T. wagnerianus: The fresh underground parts (7.5 kg) were treated according to procedure I-3 to afford MeOH extract (1.97 kg), ether extract (21 g) and BuOH extract (103 g). The BuOH extract was purified according to procedure II-1 to afford Tu_1 (0.1 g), Tu_2 (0.01 g), Tu_3 (0.4 g) and Tu_4 (0.1 g). Properties of the Constituents of *C. humilis* and *T. wagnerianus* — Cl₁: Pale yellow needles from EtOH, mp 192—196 °C (dec.), $[\alpha]_D^{20}$ —93.7 ° (c=1.00, pyridine). UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 241 (4.34), 262 (4.24), 346 (4.43), $\lambda_{\max}^{\text{MeOH}+\text{AlCl}_3}$ nm: 268, 304, 397, $\lambda_{\max}^{\text{MeOH}+\text{AcONa}}$ nm: 241, 262, 346. IR ν_{\max}^{KBr} cm⁻¹: 3400—3200, 1650, 1610. ¹H-NMR (DMSO- d_6) δ : 1.08 (3H, d, J=6 Hz, C-5 CH₃ of rha), 3.58 (6H, s, OCH₃ of C-3′,5′), 6.49 (1H, d, J=2 Hz, H-6), 6.87 (1H, d, J=2 Hz, H-8), 7.05 (1H, s, H-3), 7.36 (2H, s, H-2′,6′), 12.97 (1H, s, OH). Cl₂, Cst₂, Cu₄, Tl₃ and Tu₃: A white powder from MeOH–AcOEt, (mp 189–190 °C (dec.)), $[\alpha]_D^{16}$ –86.4° (c = 1.03, pyridine). IR ν_{max}^{KBr} cm⁻¹: 3600–3250 (OH). ¹³C-NMR (pyridine- d_5) δ : 18.3 (C₆ of rha), 18.5 (C₆ of rha), 18.8 (C₆ of rha), 47.4 (OCH₃), 100.4 (C₁ of glc), 102.0 (C₁ of rha), 102.3 (C₁ of rha), 103.0 (C₁ of rha), 104.7 (C₁ of glc). Cl₂, Cst₂, Cu₄, Tl₃ and Tu₃ were identified as methyl proto-Pb by comparing the IR and ¹³C-NMR spectra with those of an authentic sample. Cst₁, Cu₃ and Tst₁: Colorless needles from MeOH, mp 185—189 °C (dec.), $[\alpha]_D^{16}$ – 102.9 ° (c = 1.00, pyridine). IR $\nu_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3540—3220 (OH). 13 C-NMR (pyridine- d_5) δ : 18.5 (C₆ of rha), 18.6 (C₆ of rha), 47.3 (OCH₃), 100.3 (C₁ of glc), 102.0 (C₁ of rha), 102.9 (C₁ of rha), 104.8 (C₁ of glc). Cst₁, Cu₃ and Tst₁ were identified as methyl proto-dioscin by comparing the IR and 13 C-NMR spectra with those of an authentic sample. Cu₁: Colorless needles from aq. MeOH, mp 243—246 °C (dec.), $[\alpha]_D^{16} - 110.3$ ° (c = 0.55, MeOH). IR $v_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3600—3200 (OH), 980, 920, 900, 864 (intensity 920 < 900, 25(*R*)-spiroketal). ¹³C-NMR (pyridine- d_5) δ : 18.4 (C₆ of rha), 18.6 (C₆ of rha), 100.4 (C₁ of glc), 101.9 (C₁ of rha), 103.0 (C₁ of rha). Cu₁ was identified as dioscin by comparing the IR and ¹³C-NMR spectra with those of an authentic sample. Cu₂ and Tu₁: Colorless needles from MeOH, mp 243—245 °C (dec.), $[\alpha]_D^{16}$ – 104.7 ° (c = 0.55, MeOH). IR $v_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3600—3240 (OH), 984, 920, 902, 865 (intensity 920 < 902, 25(R)-spiroketal). 13 C-NMR (pyridine- d_5) δ : 18.4 (C₆ of rha), 18.6 (C₆ of rha), 18.8 (C₆ of rha), 100.4 (C₁ of glc), 102.0 (C₁ of rha), 102.3 (C₁ of rha), 103.0 (C₁ of rha). Cu₂ and Tu₁ were identified as Pb by comparing the IR and 13 C-NMR spectra with those of an authentic sample. Cu₅: A white powder from MeOH–AcOEt, (mp 196—199 °C (dec.)), $[\alpha]_D^{20}$ –92.4 ° (c = 1.02, pyridine). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3460—3320 (OH). 13 C-NMR (pyridine- d_5) δ : 18.2 (C₆ of rha), 18.5 (C₆ of rha), 18.8 (C₆ of rha), 47.3 (OCH₃), 100.4 (C₁ of glc), 102.0 (C₁ of rha), 102.3 (C₁ of rha), 102.6 (C₁ of rha), 104.8 (C₁ of glc), 106.5 (C₁ of glc). Cu₅ was identified as methyl proto-rhapissaponin by comparing the IR and 13 C-NMR spectra with those of an authentic sample. Tl₁: Pale yellow needles from aq. MeOH, mp 265—269 °C (dec.), $[\alpha]_D^{16}$ –48.0 ° (c = 0.98, pyridine). UV λ_{max}^{MeOH} nm (log ϵ): 253 (4.43), 265 (4.40), 348 (4.45), $\lambda_{max}^{MeOH+AlCl_3}$ nm: 272, 425. IR ν_{max}^{KBr} cm⁻¹: 3530—3060, 1650, 1600. Tl₁ was identified as glucoluteolin by comparing the IR and ¹³C-NMR spectra with those of an authentic sample. Tl₂: Pale yellow needles from aq. MeOH, mp 190—192 °C (dec.), $[\alpha]_D^{16}$ – 77.3 ° (c = 0.97, pyridine). UV λ_{max}^{MeOH} nm (log ε): 257 (4.26), 265 (4.28), 342 (4.29), $\lambda_{max}^{MeOH+AlCl_3}$ nm: 272, 420. IR ν_{max}^{KBr} cm⁻¹: 3460—3200, 1650, 1600. Tl₂ was identified as scolymoside by comparing the IR and ¹³C-NMR with those of an authentic sample. Tl₄ and Tu₄: A white powder from MeOH–AcOEt, (mp 181—183 °C (dec.)), $[\alpha]_D^{20}$ – 84.4 ° (c = 0.90, pyridine). IR $v_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3570—3210 (OH). 13 C-NMR (pyridine- d_5) δ : aglycone C₁—C₂₇: 37.7, 30.3, 78.4, 39.2, 141.1, 121.8, 32.6, 31.7, 50.6, 37.3, 21.5, 39.9, 43.6, 55.2, 34.7, 84.6, 64.8, 14.3, 19.5, 103.6, 11.8, 152.6, 33.7, 23.9, 31.7, 75.3, 17.4; sugars: 18.5 (C₆ of rha), 18.7 (C₆ of rha), 18.9 (C₆ of rha), 100.6 (C₁ of glc), 102.1 (C₁ of rha), 102.4 (C₁ of rha), 103.2 (C₁ of rha), 104.9 (C₁ of glc). *Anal.* Calcd for C₅₇H₉₂O₂₅·3/2H₂O: C, 56.84; H, 7.95. Found: C, 56.93; H, 8.03. Tst₂: A white powder from MeOH–AcOEt, (mp 174—176 °C (dec.)), $[\alpha]_D^{20}$ -80.4 ° (c=1.01, pyridine). IR $\nu_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3470—3280 (OH). 13 C-NMR (pyridine- d_5) δ : aglycone C_1 — C_{27} : 37.7, 30.3, 78.2, 39.1, 141.0, 121.8, 32.6, 31.6, 50.6, 37.3, 21.3, 39.9, 43.6, 55.2, 34.6, 84.6, 64.7, 14.3, 19.5, 103.6, 11.8, 152.6, 33.6, 23.8, 31.6, 75.0, 17.4; sugars: 18.4 (C_6 of rha), 18.6 (C_6 of rha), 100.4 (C_1 of glc), 102.0 (C_1 of rha), 102.9 (C_1 of rha), 104.8 (C_1 of glc). *Anal.* Calcd for $C_{51}H_{82}O_{21}$: C, 59.40; H, 8.02. Found: C, 58.95; H, 7.91. Tu₂: Colorless needles from MeOH, mp 248—250 °C (dec.), $[\alpha]_D^{20}$ –140.3 ° (c = 1.00, pyridine). IR $\nu_{\text{max}}^{\text{KBr}}$ cm ⁻¹: 3400—3200 (OH), 980, 920, 900, 890 (intensity 920 < 900, 25(R)-spiroketal). ¹³C-NMR (pyridine- d_5) δ: aglycone C₁—C₂₇: 37.7, 30.3, 78.4, 39.1, 141.0, 121.8, 32.5, 31.9, 50.4, 37.3, 21.1, 32.1, 45.1, 53.2, 32.5, 90.3, 90.2, 17.2, 19.5, 44.9, 9.5, 109.9, 32.1, 28.9, 30.5, 66.9, 17.3; sugars: 18.4 (C₆ of rha), 18.6 (C₆ of rha), 18.8 (C₆ of rha), 100.5 (C₁ of glc), 102.0 (C₁ of rha), 102.3 (C₁ of rha), 103.1 (C₁ of rha). *Anal.* Calcd for C₅₁H₈₂O₂₁·3/2H₂O: C, 57.88; H, 8.10. Found: C, 57.64; H, 8.09. Tu₂ was identified as Tg by comparing the ¹³C-NMR spectrum with that of an authentic sample. Acidic Hydrolyses of Tl_4 , Tst_2 and Tu_2 — Tl_4 (5 mg), Tst_2 (5 mg) and Tu_2 (5 mg) were separately hydrolyzed with 2 N HCl-50% dioxane (2 ml) by refluxing for 2 h on a water bath, then each reaction mixture was neutralized with NaHCO₃ and evaporated to dryness under reduced pressure. Each residue was derivatized to the trimethylsilyl (TMS) ether and examined by GLC (column, 5% SE-52 on Chromosorb W 3 mm × 2 m; column temp., 200 °C; injection temp., 220 °C; carrier gas, N_2 1.0 kg/cm²; t_R (min): 3.4, 4.4 (TMS-rhamnose), 8.8, 12.0 (TMS-glucose). Treatments of Tl_3 and Tst_1 with Acetic Acid— Tl_3 (100 mg) and Tst_1 (100 mg) were individually dissolved in acetic acid (30 ml) and refluxed for 30 min. Each reaction mixture was cooled and evaporated to dryness under reduced pressure. The residues were subjected to column chromatography on silica gel with $CHCl_3$ -MeOH- H_2O (7:3:0.4, v/v) to provide pseudoproto-Pb (25 mg) from Tl_3 and pseudoproto-dioscin (77 mg) from Tst_1 by repeated precipitation from MeOH-AcOEt. Acknowledgement The authors are grateful to Prof. Toshihiro Nohara of Kumamoto University for providing valuable ¹³C-NMR data. Thanks are also due to Mr. Susumu Isoda of the Medicinal Plant Garden of Showa University for his kind supply of the plant materials and to the staff of the Analytical Laboratory of this School for elemental analysis and NMR spectral measurement. One of the authors (J. S.) is grateful to the Ministry of Education, Science and Culture of Japan for a Grant-in-Aid for Scientific Research (No. 58570885). ## References - 1) a) Y. Hirai, S. Sanada, Y. Ida, and J. Shoji, Chem. Pharm. Bull., 32, 4003 (1984); b) Idem, ibid., 32, 295 (1984). - 2) This work was presented at the 104th Annual Meeting of the Pharmaceutical Society of Japan, Sendai, March 1984. - 3) a) C. A. Williams, J. B. Harbone, and T. Clifford, *Phytochemistry*, 12, 2417 (1973); b) J. B. Harbone, C. A. Williams, and J. Greenham, *ibid.*, 13, 1557 (1974). - 4) F. D. Monache, F. Ferrari, and G. B. Marinibettolo, Gazz. Chim. Ital., 101, 387 (1971). - 5) F. M. Panizo and M. Pinar, Chem. Ind., 88, 496 (1962). - 6) Chin Su New Medical College, "The Dictionary of Chinese Medicine," (中薬大辞典) Shanghai Technologic Publisher, Shanghai, 1977, Vol. II, p. 2295. - 7) S. Kiyosawa, M. Hutoh, T. Komori, T. Nohara, I. Hosokawa, and T. Kawasaki, Chem. Pharm. Bull., 16, 1162 (1968). - a) M. E. Wall, C. R. Eddy, M. L. McClennan, and M. A. Klumpp, *Anal. Chem.*, 24, 1337 (1952); b) C. R. Eddy, M. E. Wall, and M. K. Scott, *ibid.*, 25, 266 (1953); c) R. N. Jones, K. Katzenellenbogen, and K. Dohriner, *J. Am. Chem. Soc.*, 75, 1581 (1953). - 9) T. Nohara, K. Miyahara, and T. Kawasaki, Chem. Pharm. Bull., 23, 872 (1975). - 10) S. Kuwazuka and Y. Ohshima, Nippon Nogeikagaku Kaishi, 38, 351 (1964).