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The process of Brownian flocculation of suspended particles has been simulated based on the
random coalescence model for polydisperse systems by using a digital computer. The conformity
between von Smoluchowski’s and Miiller’s theories was examined. It was found that the simplifying
assumption by which the concept of collision probability is introduced into the theories was
adequate. Since no such assumption was necessary in the present model, the model can be applied
to more complicated polydisperse systems. Moreover, this model can be used to obtain not only the
total number of particles formed but also the particle size distribution at any period in the
flocculation process. The results indicate that the process is governed by a layering mechanism such
that the flocculation is promoted by a preferential cohesion of small particles to large aggregates.
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Introduction

Flocculation and agglomeration are processes that are of pharmaceutical importance.
Controlled flocculation, for instance, is a means of avoiding caking in suspension, and
flocculation kinetics play a part in both this and in sedimentation Kinetics.

This article deals with an investigation of the kinetics of flocculation by computer
simulation. Theoretical work in the area of fast coagulation can be roughly separated into the
following categories: (a) postulates about the nature of the events and the formulation of
equations for the resulting observables; (b) analytical solution to these equations in various
degrees of approximation; (c) numerical solution of the equations; (d) computer simulations
of the physical processes thought to occur.

This paper falls into the last category. Such simulations were begun by Vold' ~* and
Sutherland,® and have been developed by Hutchison et al.,” Medalia,” Sunada and
Nakagaki,? ~!® Kausch e al.'¥ and Meakin'>~!") using two- or three-dimensional models.

Work preliminary to the work presented here has appeared in previous publi-
cations.'® 29 In some of these, we approached the problem by a random walk mo-
del'®20:23:26) and in some by a random addition model.*®-21:22:2%:2% The former model is
advantageous for describing the change in the size and shape of individual agglomerates and
the agglomeration kinetics of polydispersed particles. The latter model is useful for simulating
the shape and internal structure of an agglomerate in relation to the adhesion behavior of the
particles.

In a previous paper,”® we simulated the agglomeration of mono-sized circles on a two-
dimensional plane by using a random “‘walk” model. In this simulation procedure, the process
is one where agglomeration is affected by the frequency of particle collision and the adherence
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probability, and, hence, the kinetics are similar to von Smoluchowski’s.2”

The present study deals with the simulation of the flocculation process of suspended
particles by means of a random ‘‘coalescence”” model. The aim of the study was to elucidate
the effect of the number and size distribution of the particles at any period in the flocculation
process and to check the conformity between von Smoluchowski’s and Miiller’s?® theories.

Experimental

For the initial stage of the flocculation process, arbitrary numbers of aggregates having a certain size distribution
were positioned randomly in areas with locations numbered from 1 to 12000. If the aggregate in a particular area was
an i-fold cluster, then the number i was assigned to this area. When there was no aggregate in the area, then the
numeral 0 was assigned. The address numbers of the area were used not for indicating the position of aggregates but
for randomly selecting aggregates and allowing them to collide.

In accordance with Miiller’s theory, the collision probability between two particles is minimum when the sizes of
the particles are equal and it becomes r;-times greater when the particles differ from one another in size. The
expression for r;; is

rij=(ri+rj)2/4rirj:(]+ri/rj)2/4(ri/rj) )

where r; and r; are the “effective” radii of the aggregates of categories i and J- The maximum collision probability ratio
max; (Which is the ratio of the collision probability of the largest aggregate to the primary particles) can now be
introduced into the simulation. The volume of the aggregates having i primary particles is the sum of that of the
primary particles. The radius of this aggregate is then given by Eq. 2.

ry=it @)

The address numbers of two aggregates were chosen at random by using computer-generated, random number
pairs (x,y), where x and y are between 1 and 12000. When both areas or either area whose address number was
selected randomly had the number 0, there would be no aggregates which could collide with each other. At this point,
one unit of flocculation time was supposed to have elapsed, that is, the flocculation time was counted. The time for
which particles travel until collision or mis-collision occurs in a certain medium can be related to the number of
selections of the address numbers by random number generation. A pseudo-random number between 0 and 1 unit
was then generated and compared to V,, the standardized ratio of the two collision probabilities;

Vk = rij/ymaxl (3)

where r;; was calculated by Eq. 1, and where obviously ¥, =1. When V, was larger than the generated pseudo-
random number, then the two aggregates were considered to have collided and flocculated. The flocculation number
i+j was then stored in the area component where the larger of i or J existed previously and 0 was put into the other. If
Vi was smaller than the pseudo-random number, then collision was considered not to have occurred and one unit of
flocculation time was counted. By proceeding in this manner, the population number of the aggregates decreased as
the flocculation time increased, and this functionality could be monitored.

It was otherwise assumed that the unit flocculation time had elapsed when the address numbers had been called
10000 times. The population number and average radius of the aggregates were printed out every five unit.

These calculations were terminated when the population number of the aggregates became less than 1/10 of the
initial number or when r,; exceeded Vmax,» Which corresponds to the fact that the agglomerates of larger size than max
might be broken.

Results and Discussion

von Smoluchowski assumed in his theory of rapid flocculation that the ratio of the
number of aggregates N,, of m single particle at any time to the total original number N, is
given by the expression

Nm/N():(t/t]/z)m_l/(l+t/t1/2)m+1 (4)

where 7,, is the half-life period for the flocculation process, defined as the time required to
reduce the total number of particles to one-half.

A typical case is given in Fig. 1 for max=2 x 10° with 10000 primary particles having a
uniform radius of 1.0. In this figure, the total number of particles and the number of each
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Fig. 1. von Smoluchowski Plots of Simulation Fig. 2. Relation between #,,, and yp.x, (No=
Data in a Monodisperse System, (N, = 10000 5000, 7500 and 10000)
and r; =1.0)

O,N;®, N;; @ Ny; O, Ns.

TaBLE 1. ¢, and k Values with Various r; TaBLe II. 1, and k Values with Various N,
¥ i k x 10° Ny Ly k x 10°
1.0 465.94 0.2170 10000 66.90 1.4948
3.0 465.95 0.2170 7500 89.58 1.4886
7.0 465.94 0.2170 5000 134.27 1.4908

10.0 465.94 0.2170
20.0 465.94 0.2170 r;=1.0, max=2x 10°
30.0 460.91 0.2170
40.0 456.85 0.2189
50.0 458.00 0.2184

N, = 10000, max =2 x 10°.

species up to triplet are shown as a function of time. Theoretical curves calculated by Eq. 4,
where 1,,, was calculated from Eq. 5, are represented by solid lines.

t1p=Nt(Ny—N) (5)

It was found that this model is in good agreement with von Smoluchowski’s theory.

Table I shows the values of ¢, ,, and the flocculation rate constant at various sizes of the
primary particle under the condition of constant y,,, and N,. It was indicated that these
values are not affected by the primary particle size. '

Table II indicates that the flocculation rate constant is independent of N,, when r; is kept
constant. It is clear from Fig. 2 that y,,,, is in direct proportion to #,, which varies inversely
to N, in a monodisperse system (;,=3.58 .y, No=10000; 1 2=4T Y maxy» No=7500;
1112 ="7.1670x,» No=>5000). Thus the following empirical formula was obtained.

t1/2=35800ymax1/N0 (6)

This equation was used for obtaining ¢, values.

Figure 3 shows that the number of small particles diminishes more rapidly in the presence
of large ones. The Miiller equation gives the variation of population numbers of total particles
and the small particles with time

N, A
N= 1+ po— (M
T+ty, (VoA + 1)1 +t/t4)2,0) .
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V42
{(VA+ D +1t/ty,, )4 132

where A=(V2+1)/2V,, V.=r/r, and Va=N|/N, r,r, and N, and N, are the radii and the
population numbers of large and small primary particles, respectively; ¢, , is the half-life of
large particles in the monodisperse system. The solid lines show the theoretical population
density of total large and small particles calculated by means of the above equations. In the
initial stage, a larger flocculation velocity was observed compared to the theoretical curves in
the monodisperse system of the large particles. On the other hand, during the latter period, the
data were in accordance with von Smoluchowski’s equation. It seems reasonable to assume

®

N,=Nl1 +t/t1/2,1)2ml+1)
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Fig. 3. N,/N,, N,/N, and N/N, as a Function of
Time for a Didisperse System, (r,=40 and
re=1; Ny=3000, N,=7000 and N,=10000)

— von Smoluchowski’s plot (N,=10000);
—=——=, von Smoluchowski’s plot (N, = 3000); —QO—,
Miiller’s plot (total number of particles); (p, Miiller’s
plot (number of large particles); —@-—, Miiller’s plot
(number of small particles).
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Fig. 5. N as a Function of Time, V, is Taken as
a Parameter and V, is Maintained Constant,
(=1000/9000; max =2 x 10°)

------ , monodisperse; --—--—, r,/r;=5.0:1.0; —-—-—,

10.0:1.0; ——, 20.0:1.0; ————, 30.0:1.0; ——,
40.0:1.0.
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Fig. 4. N,/N,, N,/N, and N/N, as a Function of
Time for Didisperse System, (r, =40, ry=1 and
N/N;=1; N;=5000, N,= 5000 and N, = 10000)

—— von Smoluchowski’s plot (No=10000);
——=-, von Smoluchowski’s plot (¥, = 5000); —O—,
Miiller’s plot (total number of particles); @, Miiller’s
plot (number of large particles); —@—, Miiller’s plot
(number of small particles).
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Fig. 6. N as a Function of Time; V, is Taken as

a Parameter, and V, is Maintained Constant
(=40/1; max=2x 10)

------ » monodisperse; --—--—, N,/N,=9000: 1000;
----- » 7000:3000; ——~—, 5000: 5000; — —, 3000:
7000, ---—---—, 1000 : 9000; ——, 100 9000.
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Fig. 7. r, (Mean Radius) as a Function of
Time
Standard deviation (S.D.) is taken as a parameter;

mean radius=20.0; ———~—, S.D.=0.0; —, S.D.=
3.0; ——, S.D.=5.0.

t(s)

Fig. 8. Comparison of the Experimental Re-

sults of Tourila with the Simulation Results
Actual system, V,=598/283, V,=6.01 x 10%/6.01 x

108, n=0.01gem™*s™!, T=290.8K, ¢,=310.84s;

simulation system, V,=5.33/2.52, ¥,=5000/5000,

tiyp.; =916.48, max=2x 10% transformation coeffi-
cient=0.339s.
O, actual system; —, simulation.

that the process was governed by a layering mechanism®” and that the flocculation was
promoted by a preferential cohesion of small particles to large aggregates.

Figure 4 shows the results for didispersions containing the same number of small and
large particles. The layering mechanism can also be considered to hold in this system. Figure 5
shows the total population number N as a function of 7 in a didisperse system, when ¥, is
taken as a parameter and N, is maintained constant. It can be seen that the flocculation
velocity increases as V/, increases.

The influence of the ratio ¥, on the flocculation velocity is shown in Fig. 6 under
conditions of constant V.. It is clear from these results that the population number increases
as V, increases during the initial stage of the flocculation but the situation becomes
complicated during the latter stage. Hence, if a polydisperse system behaves like a didisperse
system, the Miiller model holds well.

Further simulations were carried out to investigate the application of Miiller’s theory to a
polydisperse system. Figure 7 shows the results for the system of primary particles having a
large standard deviation. Flocculation occurred rapidly in accordance with the model based
on a layering mechanism.

It is important to obtain the relationship between actual flocculation phenomena and
the simulation. One way to do this is to use time transformation, i.e., real time in actual
flocculation to unit time in the simulation. A typical example is given in Fig. 8, which shows
the flocculation of Au-Sol with NaCl reported by Tourila*®; 0.339s was used as the
transformation coefficient. It was found that the results of simulation were in good agreement
with the experimental results, and it is concluded that this model may be very useful for the
simulation of Brownian flocculation.
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