Communications to the Editor

Chem. Pharm. Bull. 34(10)4403—4405(1986)

SYNTHESIS OF A HIGHLY POTENT ANALOGUE OF PROSTACYCLIN, (-)-5-METHYLENEISOCARBACYCLIN

Shigeo Amemiya, Kazuo Koyama, Shinichi Saito and Koichi Kojima* Chemical Research Laboratories, Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140, Japan

Synthesis of (-)-5-methyleneisocarbacyclin $(\underline{1a})$ is described. The compound $(\underline{1a})$ was found to be a platelet aggregation inhibitor as potent as prostacyclin.

KEYWORDS——methyleneisocarbacyclin; isocarbacyclin; carbacyclin; prostacyclin; platelet aggregation inhibitor

Since the discovery of prostacyclin, a large number of its analogues have been synthesized to improve the instability. We² and others³ reported the synthesis of isocarbacyclin, a stable carbon analogue of prostacyclin, which has platelet antiaggregating activity more potent than carbacyclin (9(0)-methano-prostacyclin) but less potent than prostacyclin. Having to find a more potent analogue, we planned to synthesize an analogue of isocarbacyclin having an exomethylene group at the C-5 position. This would have structural features more similar to prostacyclin: Such an analogue (la) has the π -electron system from the C-5 through the C-6(9 α) position which is approximately similar to the system in prostacyclin with its oxygen lonepair electrons from C-5 through 9 α -oxygen. Moreover the α -carboxy side chain is oriented in a favourable position just as it is in prostacyclin (Z-configuration), because the trans-dienic structure is considered to be more stable than the cis-dienic structure. Here, We describe the synthesis of 5-methyleneisocarbacyclin (5-methylene-9(0)-methano- Δ 6(9 α)-prostaglandin I₁) (la).

The ketone $(\underline{2})^{4}$ was used as the starting material. Firstly, the carbon-frame-work of carboxylic side chain and the double bond at C-6(9 α) position were introduced by the following two step operation. Horner reaction of $\underline{2}$ with trimethyl phosphonoacetate and NaH in THF and DMF (1:1) gave the unsaturated ester ($\underline{3}$). Treatment of $\underline{3}$ with lithium dicyclohexylamide in THF containing HMPA, followed by the addition of 4-benzyloxy-1-bromobutane, afforded the ester ($\underline{4}$) as an inseparable mixture of the double bond isomers in 77% yield from $\underline{2}$ (vide infra).

Vol. 34 (1986)

Secondly, the dienic structure was introduced by the following sequence of reactions. LiAlH₄ reduction of $\underline{4}$ yielded the alcohol ($\underline{5}$), which was treated with dimethyl-t-butylchlorosilane in DMF in the presence of imidazol to afford the silyl ether ($\underline{6}$). Debenzylation of $\underline{6}$ with Na in liquid NH₃ and THF gave the alcohol ($\underline{7}$) in 85% yield from $\underline{4}$. The hydroxy group in $\underline{7}$ was protected as acetate with acetic anhydride in pyridine to afford the compound ($\underline{8}$). Deprotection of $\underline{8}$ with tetrabutylammonium fluoride in THF gave $\underline{9}$ in 95% yield from $\underline{7}$. In order to introduce the double bond, the hydroxy group in $\underline{9}$ was converted to mesylate by treatment with MsCl in pyridine to afford $\underline{10}$. Treatment of $\underline{10}$ with DBU in HMPA in the presence of NaI yielded the diene ($\underline{11}$) in 89% yield from $\underline{9}$.

The compound ($\underline{11}$) was then converted to $\underline{1a}$ by the following sequence of reactions. Treatment of $\underline{11}$ with $K_2\text{CO}_3$ in methanol, followed by chromatographic separation, afforded the more polar alcohol ($\underline{12a}$) and the less polar alcohol ($\underline{12b}$) in 56% and 42% yield, respectively. The structures of $\underline{12a}$ and $\underline{12b}$ were assigned on the basis of nuclear magnetic resonance spectra: $\underline{12a}$ has a signal due to an H_1 proton at 3.10 (δ), a characteristic of isocarbacyclin. 3b) On the other hand, the compound ($\underline{12b}$) does not have such a signal in the nuclear magnetic resonance spectrum. Oxidation of $\underline{12a}$ with CrO_3 in aqueous pyridine, 5) followed by the

2; R= 0

3; R= CHCOOMe

$$R_2$$
 H_1
 C_5H_1
 C_5H_1

4; R=CH(COOMe)CH2CH2CH2OCH2Ph

5; R=CH(CH₂OH)CH₂CH₂CH₂OCH₂Ph

6; R=CHCH₂CH₂CH₂OCH₂Ph CH₂OSi(t-Bu)Me₂

7; R=CHCH₂CH₂CH₂CH₂OH CH₂OSi(t-Bu)Me₂

8; R=CHCH₂CH₂CH₂CH₂OAc CH₂OSi(t-Bu)Me₂

9; R=CHCH₂CH₂CH₂CH₂OAc CH₂OH

10; R=CHCH₂CH₂CH₂CH₂OAc CH₂OMs

11; R= CCH₂CH₂CH₂CH₂OAc

esterification with diazomethane, afforded the compound ($\underline{13}$). Treatment of $\underline{13}$ with aqueous acetic acid and THF gave the alcohol ($\underline{14}$), mp 69-70°C. Finally, hydrolysis of $\underline{14}$ with sodium hydroxide in aqueous methanol yielded (-)-5-methyleneisocarbacyclin ($\underline{1a}$), 6) mp 78-80°C, in 45% yield from $\underline{12a}$.

Following a sequence of reactions similar to that described for $\underline{1a}$, the alcohol ($\underline{12b}$) afforded (+)-5-methylene-6,9 α -methano- Δ^6 -prostaglandin \overline{I}_1 ($\underline{1b}$),7) mp 88-90°C.

The structures of \underline{la} and \underline{lb} were further confirmed by careful analysis of their nuclear magnetic resonance spectra (400 MHz), including decoupling and nuclear Overhauser effect experiments. Especially, the trans dienic structure in \underline{la} was determined by the nuclear Overhauser effect experiment: The nuclear Overhauser effects occurred between the exo-methylene protons at the C-5 position and the Ha or Hb proton.

The compound ($\underline{1a}$) exhibited platelet antiaggregating activity (IC $_{50}$ =1.0 ng/ml) using human platelet-rich plasma (ADP). In contrast, the compound ($\underline{1b}$) was inactive in the same test. 9)

REFERENCES AND NOTES

- P.A. Aristoff, "Advances in Prostaglandin, Thromboxane and Leukotriene Research" edited by J.E. Pike and D.R. Morton, Vol. 14, p. 309 (1985); R.C. Nickolson, M.H. Town and H. Vorbruggen, Med. Res. Rev., <u>5</u>, 1 (1985).
- 2) K. Koyama and K. Kojima, Chem. Pharm. Bull., 32, 2866 (1984).
- a) M. Shibasaki, Y. Torisawa and S. Ikegami, Tetrahedron Lett., 24, 3493 (1983);
 b) M. Shibasaki, H. Fukasawa and S. Ikegami, ibid., 24, 3497 (1983);
 c) Y. Ogawa and M. Shibasaki, ibid., 25, 1067 (1984);
 d) T. Mase, M. Sodeoka and M. Shibasaki, ibid., 25, 5087 (1984);
 e) M. Sodeoka and M. Shibasaki, Chem. Lett., 1984, 579;
 f) Y. Torisawa, H. Okabe, M. Shibasaki and S. Ikegami, ibid., 1984, 1069;
 g) Y. Torisawa, H. Okabe and S. Ikegami, J. Chem. Soc., Chem. Commun., 1984, 1062.
- 4) K. Kojima, S. Amemiya, K. Koyama and K. Sakai, Chem. Pharm. Bull., <u>33</u>, 2688 (1985).
- 5) R.H. Cornforth, J.W. Cornforth and G. Popjaks, Tetrahedron, 18, 1351 (1962).
- 6) IR (CHCl₃); 3400, 1710, 1630, 1595, 1090, 975 cm⁻¹. NMR (CDCl₃) δ : 0.90 (3H, t), 3.07 (1H, m), 3.6-4.2 (2H, m), 4.94 (2H, br s), 5.55 (2H, m), 5.74 (1H, br s). (α) $_{\rm D}^{24}$ = -33.4° (C=1.0, CHCl₃). monohydrate: mp 86-88°C.
 7) IR (CHCl₃); 3400, 1710, 1630, 1600, 1085, 975 cm⁻¹. NMR (CDCl₃) δ : 0.88
- 7) IR (CHCl₃); 3400, 1710, 1630, 1600, 1085, 975 cm⁻¹. NMR (CDCl₃) δ : 0.88 (3H, t), 3.5-4.2 (2H, m), 4.93 (2H, br s), 5.58 (2H, m), 5.75 (1H, br s). (α)_D²⁴ = + 137.4° (C=1.0, CHCl₃).
- 8) We thank Dr. H. Haruyama for analysis of the NMR spectra.
- 9) The compound (<u>1a</u>) was as potent as prostacyclin in the same test. Using rabbit platelet-rich plasma the compound (<u>1a</u>) was found approximately five times as potent as prostacyclin in the same test. We thank Dr. T. Oshima for testing biological activities.

(Received July 10, 1986)