Communications to the Editor

Chem. Pharm. Bull. 34(10)4443—4446(1986)

REGIOSELECTIVE REDUCTION OF α , γ -ONOCERADIENEDIONE: SYNTHESIS OF LANSIOLIC ACID

Mugio Nishizawa,*,a,1) Hisaya Nishide, a Kaoru Kuriyama, b and Yuji Hayashi a
Department of Chemistry, Faculty of Science, Osaka City University, a
Sumiyoshiku, Osaka 558, Japan, and Shionogi Research Laboratories, b Shionogi
and Co., Fukushimaku, Osaka 553, Japan

Synthesis of lansiolic acid is completed through the regionelective reduction of α, r -onoceradienedione as a key step, and this unique regionelectivity is discussed based on the conformation analysis of 3-keto-4,4,10-trimethyldecalin system.

KEYWORDS — Lansium domesticum; α, r -onoceradienedione; lansiolic acid; regioselective reduction; conformation analysis; 3-keto-4,4,10-trimethyldecalin; CD spectrum

The fruit skin of Lansium domesticum contains a large quantities of novel unsymmetrical onoceranoid triterpenes such as lansiolic acid (1a), lansiosides A - C (1b - 1d),2,3) α ,r-onoceradienedione (2), and lansic acid (3).4) Since some of these have important physiological activities,3) we have designed a general procedure for synthesizing them. In our previous communication5) we reported the total synthesis of 2 and 3 using a mercury(II) triflate/N,N-dimethyl aniline complex.6) From the biogenetic standpoint, diketone 2 seems to be a key intermediate in the synthesis of 1 and 3, so that the two carbonyl functions of 2 were distinguished by the enzyme system of this plant. We wish to describe here the chemical differentiation of these carbonyl functions by NaBH₄ reduction, and the synthesis of lansiolic acid (1a). The regionelectivity of the carbonyl reduction of 2 is also discussed on the basis of the conformational analysis of 3-keto-4,4,10-trimethyldecalin systems by CD spectroscopy.

1 a R = H

1b R = N-acetyl- β -D-glucosamine

1c R = β -D-glucose

1d R = β -D-xylose

The diketone 2 was obtained in ca 0.05% yield from the dichloromethane extract of <u>L. domesticum</u> by ordinary and then reverse phase column chromatography. Selective reduction of 2 under a variety of conditions was examined and the results are summarized in Table I. The highest regionselectivity was achieved by using 10 equiv of NaBH₄ in isopropyl alcohol at -70°C for 1 h. This afforded the desired keto alcohol 4 in 35% yield along with a 3% yield of the undesired isomer 5, 49% of the diol 6, and 13% of the starting material (entry 9). The isomeric keto alcohols 4 and 5 were nicely separated by HPLC (Develosil 30-3 column, 5:1 mixture of hexane and ethyl acetate). The relative orientation of the double bonds of 4 and 5 at $\Delta^{8,26}$ and $\Delta^{14,15}$ was established by their CD spectra and LIS-NMR.

The major keto alcohol 4 was converted to oxime 7 in 73% yield by treatment with acetic anhydride/pyridine/4,4-dimethylaminopyridine and hydroxylamine. Beckmann fragmentation of 7 by p-toluenesulfonyl chloride in pyridine afforded seco-nitrile 8 (29% yield). Hydrolysis of 8 with KOH in ethanol gave a hydroxy carboxylic acid, which was identical with lansiolic acid (1a) in all respects.

The conformational mobility of the cyclohexane part of the 3-keto-4,4,10trimethyldecalin system has been discussed by Tsuda et al in terms of "4,4-dimethyl group effect". They reported that the negative Cotton effect on CD spectra indicates the chair conformation and a positive Cotton effect indicates the twist-boat conformer.?) When the CD spectra of the reduction products 4 and 5 were determined at -190° in ether/isopentane/ethanol (5:5:2) (Figure 1), a large negative Cotton effect was observed in both compounds. This would be due to more stable chair conformers resulting from freezing the conformational equilibrium. At -70°, the CD amplitude of 5 with exocyclic double bond showed a significant decrease of $\Delta \varepsilon$ value depending on the increased contribution of a twist-boat conformer. But the CD spectrum of 4 with endocyclic double bond was very close to that at -190c. Thermodynamic calculations based on these spectral data*) showed that the former compound contains about 20% of the twist-boat conformer at -70°, while 4 still maintains more than 93% of the chair conformer at the same temperature. α , r-Onoceradienedione (2) can be considered to take a conformation essentially analogous to that of 4 (C/D) and 5 (A/B) in both of the decalone ring moieties, respectively. Thus 2 should exist in a 4:1 equilibrium mixture of conformers 9 and 10 at -70c. If the unstable twist-boat conformer is more reactive than the chair conformer, the preferential reduction at the A-ring ketone could be reasonably considered to proceed via the conformer 10.

Table I. Regioselective Reduction of $\alpha, \delta\text{-Onoceradienedione}$

Entry	Reagent	Equiv.	Solvent	Condition		Product yield(%)			
				°C,	h	2	4	5	6
1	LiAl(O-t-Bu) ₃ H	4	THF	60,	8	100	0	0	0
2	LiAlH ₄	4	THF	0,	2	18	13	10	59
3	NaBH ₄	1	EtOH/H ₂ O	0,	3.5	41	23	9	27
4	NaBH ₄	10	(СН ₃) ₂ СНОН	30,	0.3	10	29	12	49
5	NaBH ₄	10	(СН ₃) ₂ СНОН	0,	0.5	10	32	10	48
6	NaBH ₄	10	(СН ₃) ₂ СНОН	-10,	0.7	37	36	11	16
7	NaBH ₄	1	(СН ₃) ₂ СНОН	-70,	15	83	12	5	0
8	NaBH ₄	4	(СН ₃) ₂ СНОН	-70,	10	74	17	5	4
9	NaBH ₁	10	(CH ₃) ₂ CHOH	-70,	1	13	35	3	49

Fig. 1 CD Spectra of 4 and 5 in Ether/Isopentane/Ethanol (5:5:2)

The authors are indebted to Professor Y. Tsuda of Kanazawa University for valuable discussions. This project is supported by a Grant-in-Aid of Scientific Research, The Ministry of Education, Science and Culture, Japanese Government.

REFERENCES

- 1) Present address: Faculty of Pharmaceutical Science, Tokushima Bunri University, Yamashirocho, Tokushima 770, Japan.
- 2) M. Nishizawa, H. Nishide, Y. Hayashi, and S. Kosela, Tetrahedron Lett., 23, 1349 (1982).
- 3) M. Nishizawa, H. Nishide, S. Kosela, and Y. Hayashi, J. Org. Chem., <u>48</u>, 4462 (1983).
- 4) A. K. Kiang, E. L. Tan, F. Y. Lim, K. Habaguchi, M. Watanabe, Y. Nakadaira, K. Nakanishi, L. Fachan, and G. Ourisson, Tetrahedron Lett., 3571 (1967): K. Habaguchi, M. Watanabe, Y. Nakadaira, K. Nakanishi, A. K. Kiang, and F. Y. Lim, ibid., 3731 (1968).
- 5) M. Nishizawa, H. Nishide, and Y. Hayashi, Tetrahedron Lett., 25, 5071 (1983).
- 6) M. Nishizawa, H. Takenaka, H. Nishide, and Y. Hayashi, Tetrahedron Lett., 24, 2581 (1983).
- 7) Y. Tsuda, H. Yamashita, and T. Sano, Chem. Pharm. Bull., 32, 4820 (1984), and references are cited therein.
- 8) A. Moscowitz, K. Wellman, and C. A. Djerassi, J. Am. Chem. Soc., <u>85</u>, 3515 (1963).

(Received September 1, 1986)