Chem. Pharm. Bull. 34(11)4554-4561(1986)

Azinomycins A and B, New Antitumor Antibiotics. II. Chemical Structures

Kouichi Yokoi,* Katsuhiko Nagaoka and Toshiaki Nakashima

Central Research Laboratories, SS Pharmaceutical Co., Ltd., Narita, Chiba 286, Japan

(Received May 2, 1986)

The structures of azinomycins A and B, new antitumor antibiotics produced by a strain of *Streptomyces*, were determined on the basis of their spectral and chemical properties. The structures of three related metabolites coproduced with these antibiotics were also determined.

Keywords—antitumor antibiotic; azinomycin A; azinomycin B; chemical structure; ¹H-NMR; ¹³C-NMR; FAB-MS

In the course of our screening program for new antitumor antibiotics, a Streptomycete identified as *Streptomyces griseofuscus* S42227 was found to produce two new compounds possessing good antitumor activity in mice, which we named azinomycins A (1) and B (2), and three biologically inactive compounds structurally related to 1 and 2 (5, 6 and 7). A description of the producing organism, fermentation conditions, physico-chemical properties, antimicrobial and antitumor activities of azinomycins A and B will be published elsewhere.¹⁾ In the present paper, the structure determination of these antibiotics and related metabolites will be discussed in detail.

The molecular weights of 1 and 2 were determined by positive and negative ion fast atom bombardment mass spectrometry (FAB-MS) as 595 and 623, respectively. Elemental analysis, proton and carbon-13 nuclear magnetic resonance (1 H- and 13 C-NMR) and MS studies confirmed the molecular formulas of 1 and 2 as $C_{30}H_{33}N_{3}O_{10}$ and $C_{31}H_{33}N_{3}O_{11}$, respectively. The spectral data for 1 and 2 11 were similar to those for carzinophilin (4), 2a but the molecular formulas of azinomycins A and B were different from that of carzinophilin ($C_{31}H_{33}N_{3}O_{12}$). 2c

The molecular formulas of 5, 6 and 7 were determined by electron impact-mass spectra (EI-MS) and elemental analysis as C₁₈H₁₉NO₅, C₁₄H₁₄O₃ and C₁₃H₁₃NO₂, respectively. The ultraviolet (UV) spectra, especially those of 5 and 6, were very similar to those of 1 and 2, which suggested that 5 and 6 have the same chromophore as that of 1 and 2. The ¹H- and ¹³C-NMR data of 7 and its molecular formula suggested that 7 is a trisubstituted naphthalene derivative with methyl, methoxyl and carbamoyl substituents. When compared with published data, the spectral data for 7 were coincident with those for 3-methoxy-5-methylnaphthalene-1-carboxamide,2b) which was reported as a degradation product of carzinophilin. The ¹H-NMR data for 6 were very similar to the published data for 8, ^{2b)} except that the signal of an ester methyl group (δ 3.96) was present. Alkaline hydrolysis of 7 and methylation of the hydrolysate gave a methyl ester whose spectral data were coincident with those for 6. Thus, 6 was determined to be methyl-3-methoxy-5-methyl-naphthalene-1carboxylate. When the ¹H- and ¹³C-NMR data for 5 were compared with those for 6 (Table II and Experimental), the presence of a 3-methoxy-5-methyl-naphthalene-1-carbonyl moiety in 5 was evident, and the remaining part of 5 (C₅H₈NO₃) was indicated to be connected to the naphthalene ring by an ester linkage. The oxymethine group in 5 (1 H-NMR: δ 5.20, s, 13 C-NMR: δ 75.9) must be attached to this naphthalene ring, and because the signal of this No. 11' 4555

methine group was a singlet, the oxymethine group must be connected to two quaternary carbons. Based on the data cited above and the following groups [a carbamoyl group (1 H-NMR: δ 6.14, 5.76, D₂O-exchangeable, 13 C-NMR: δ 168.7, IR: 1675 cm $^{-1}$), an oxirane ring (1 H-NMR: δ 3.00, d, J=4.3 Hz, δ 2.76, d, J=4.3 Hz, 13 C-NMR: δ 55.8, 53.3) and a methyl group (1 H-NMR: δ 1.52, 13 C-NMR: δ 17.6)], the structure of 5 was concluded to be as shown in Fig. 2.

Comparison of the 1 H- and 13 C-NMR data for 1 and 2 with those for 5, 6 and 7 (Tables II and IV, and Experimental) showed that 1 and 2 also have the 3-methoxy-5-methylnaphthalene-1-carbonyl moiety as a partial structure. Positive ion FAB-MS of 1 and 2 showed a common fragment ion at m/z 199 corresponding to this partial structure (Table I). Further, comparison of the 1 H- and 13 C-NMR data for 1 and 2 with those for 5 showed that 1 and 2 have the structure of 5, other than the carbamoyl group, as a partial structure.

Azinomycins A and B were acid-labile, and the decomposition of 2 proceeded more easily than that of 1, presumably because an acidic hydroxyl group was present in 2. Treatment of 2 with diazomethane gave the methyl derivative 3, which was purified by column chromatography on silica gel. In the positive ion FAB-MS of 1, 2 and 3, $[M+H]^+$ ions were observed at m/z 596, 624 and 638, respectively. Besides the $[M+H]^+$ ions, common fragment ions were observed at m/z 523 and 199 among 1, 2 and 3, indicating the presence of the same partial

6: R=-OCH₃ 7: R=-NH₂ 8: R=-OH

Fig. 2

partial structure A

1:
$$X = -CH_2 -$$
2: $X = HO_XH$
3: $X = CH_3O_XH$

CH₃COOHH H

partial structure B

partial structure C

Fig. 3

	and Negati	ive FAB-MS of 1, 2 and 3		
	1	2	3	_
Positive ion FAB-MS m/z	596 [M + H] ⁺ 523	624 [M + H] ⁺ 523	638 [M + H] ⁺ 523	

199

215

171

 $622 [M - H]^{-}$

562 [M - H-CH₃COOH]

199

215

171

 $636 [M-H]^{-}$

576 [M – H–CH₃COOH]

TABLE I. Pseudomolecular Ions and Major Fragment Ions Observed in the Positive

m/z

Negative ion FAB-MS

199

215

171

 $594 [M-H]^{-}$

535 [M - CH₃COOH]

structures in them (Table I). Comparison of the mass fragmentation of 2 with those of 1 and 3 suggested that the acidic hydroxyl group in 2 was present in the part corresponding to the fragment designated as [M-523].

In the ¹³C-NMR spectra of 1, 2 and 3, signals due to 30, 31 and 32 carbons were observed, respectively. When the ¹³C-NMR data for 2 were compared with those for 3 (Tables II and III), a signal due to the methoxyl group (δ 62.2) newly formed by methylation was observed in 3 and the signal of the C-4 carbon (δ 150.6) was shifted to lower field (δ 154.5) in 3. Thus the acidic hydroxyl group in 2 was determined to be attached to the C-4 carbon.

The ¹³C-NMR data for 1 and 3 were very similar, but different in part. While ¹³C signals due to the carbons at C-1, C-2, C-6 and C-7 in 3 were observed at δ 25.6 (q), 193.8 (s), 161.4 (s) and 120.4 (s), respectively, those in 1 were observed at 27.2 (q), 202.6 (s), 163.2 (s) and 120.1 (s), respectively. The carbon at C-3 (δ 50.6, t) in 1 may correspond to one of the carbons at C-3 $(\delta 117.6, s)$ or C-4 $(\delta 154.5, d)$ in 3. The chemical shifts of the other carbons in 1 and 3 were coincident with each other, so the difference of the structures of 1 and 3 may lie in the partial structure containing the carbons at C-1, C-2, C-3, and C-6 in 1, and at C-1, C-2, C-3, C-4, C-4 OCH_3 and C-6 in 3.

The ¹H-NMR data for 1 and 3 showed differences corresponding to those observed in the 13 C-NMR data for 1 and 3. The methyl protons (H-1) in 1 and 3 were observed at δ 2.16 (s) and 2.23 (s), respectively. Based on the ¹³C-NMR data for the C-1 and C-2 carbons, these methyl protons were assigned as acetyl methyl groups. The methylene protons at H-3 (δ 4.28, dd) were observed in 1 only, and were coupled with an amide proton (5-NH, δ 10.09, dd) in 1. The carbon at C-6 was assumed to be the amide carbon, connected to the 5-NH group. Therefore, the partial structure A in 1 was derived as shown in Fig. 3. The methine proton at H-4 (δ 7.16, s), confirmed by a ${}^{1}H^{-13}C$ selective decoupling experiment, was observed in 3 only. The methoxy protons at δ 3.88 in 3 were assigned as the H-4 protons. The carbon at C-3 in 3 was assumed to form the double bond with the methine carbon at C-4. Nuclear Overhauser effect (NOE) enhancements were observed between the H-1 and H-4 protons and between the 4-OCH₃ and H-4 protons in 3 (Fig. 4). Furthermore, in view of the presence of the amide proton (δ 10.86, s) in 3, the partial structure A for 3 was derived as shown in Fig. 3.

TABLE II. ¹³C-NMR Data for 1, 2, 5, 6, 7 and 9

Carbons	1	2	5	6	7 ^{a)}	9
C-1	27.2	$23.9^{b)}$				23.6
C-2	202.6	191.1 ^{b)}				195.4
C-3	50.6	118.4				117.6
C-4		150.6^{b}				154.3
C-6	163.2	161.8				155.7
C-7	120.1	119.1				92.5
C-8	149.6	153.9				167.6
C-10	35.8	36.8				14.5
C-11	45.4	46.7				57.3
C-12	76.9	76.7				74.3
C-13	84.0	84.3				80.3
C-14	172.7	172.2				170.7
· C-15	20.7	20.6				20.9
C-17	163.8	164.2	168.7			166.5
C-18	76.7	76.5	75.9			76.9
C-19	56.0	56.0	55.8			56.3
C-20	17.0	17.2	17.6			18.3
C-21	53.7	53.4	53.3			53.1
C-1′	128.4	128.1	128.3	129.6	133.6	127.8
C-1' CO	165.7	165.5	165.6	167.8	173.3	166.0
C-1′ COCH ₃				52.2		
C-2'	121.8	122.0	122.0	121.4	117.5	122.0
C-3'	156.0	155.9	155.9	156.0	156.6	155.9
C-3′ OCH ₃	55.6	55.5	55.6	55.5	55.6	55.6
C-4'	108.6	108.5	108.5	108.1	105.7	108.8
C-4a'	133.1	133.1	133.2	133.1	133.6	133.2
C-5'	134.4	134.3	134.4	134.4	134.6	134.4
C-5' CH ₃	20.0	19.9	20.0	20.0	20.0	20.0
C-6′	127.7	127.7	127.8	127.5	128.0	127.7
C-7'	125.1	125.1	125.2	124.8	124.6	125.3
C-8'	123.9	123.7	123.8	124.0	123.7	123.9
C-8a′	126.9	126.8	126.9	126.9	125.9	127.1

a) Measured in $CDCl_3 + CD_3OD$ (1:1 v/v) solution. b) Observed as broad signals.

The common fragment ion at m/z 523 in the positive FAB-MS of 1 and 3 can be explained in terms of cleavage of the amide bond between the C-6 carbonyl group and the 5-NH group.

To confirm the results described above, long-range selective decoupling (LSPD) experiments were carried out on 3. On irradiation of the H-5 proton in 3, the signals due to the C-3, C-4, C-6 and C-7 carbons were sharpened and the intensity increased (Fig. 5), which confirmed the partial structure A, and further suggested that the C-6 carbon in the partial structure A was connected to the C-7 carbon. The fact that the C-6 carbon was attached to the C-7 carbon was also suggested by comparison of the ¹³C-NMR data for 1 and 3.

LSPD experiments were also applied to establish the partial structure of 3 corresponding to the structure of 5. On irradiation of the H-2' or H-18 proton, the double doublet due to the 1'-CO carbon collapsed to a doublet. On irradiation of the H-18 or H-16 proton, the double doublet due to the C-17 carbon collapsed to a doublet. These results confirmed the assignment of the C-17 carbon and the presence of the partial structure C (Fig. 3). Further, the shape of the signal due to the C-8 carbon (δ 149.5) changed and the intensity of the signal due to the C-6 carbon increased on irradiation of the H-16 proton, suggesting that the partial structure C was connected to the partial structure A *via* the C-7 carbon, and that the carbon at C-7 was connected to the carbon at C-8.

4558 Vol. 34 (1986)

TABLE III. ¹³C-NMR Data for 3^{a)}

Carbons	b)	$^{1}J_{C,H}$ (Hz)	² J _{C,H} , ³ J _{C,H} (Hz)
C-1	25.6 Q, s	128	
C-2	193.8 S, m		
C-3	117.6 S, d		$^{2}J(\text{C-3, H-4})$ 12.3
C-4	154.5 D, m	178	
C-4 OCH ₃	62.2 Q, d	142	$^{2}J(\text{C-4 OCH}_{3}, \text{ H-4}) 6.0$
C-6	161.4 S, s		
C-7	120.4 S, d		$^{3}J(\text{C-7, H-13}) 3.2$
C-8	149.5 S, m		
C-10	35.9 DD, d	172, 176	$^{3}J(\text{C-}10, \text{ H-}12) 8.0$
C-11	45.3 D, m	182	
C-12	77.0 D, m	146	
C-13	84.0 D, dd	145	$^{2}J(\text{C-}13, \text{H-}12) 5.0, ^{3}J(\text{C-}13, \text{H-}11) 5.0$
C-14	172.8 S, dq		² J(C-14, H-15) 7.0, ³ J(C-14, H-13) 2.8
C-15	20.7 Q, s	128	
C-17	163.8 S, dd		² J(C-17, H-16) 2.8, ² J(C-17, H-18) 2.8
C-18	76.6 D, m	152	
C-19	56.0 S, m		
C-20	17.2 Q, m		
C-21	53.5 T, m	178	
C-1'	128.4 S, d		³ J(C-1', H-8') 3.2
C-1′ CO	165.7 S, dd		³ J(C-1′ CO, H-18) 2.8, ³ J(C-1′ CO, H-2′) 6.3
C-2'	121.8 D, d	162	$^{3}J(\text{C-2'}, \text{H-4'}) 5.3$
C-3'	156.0 S, m		
C-3′ OCH ₃	55.6 Q, s	145	
C-4'	108.7 D, d	155	³ J(C-4', H-2') 4.6
C-4a'	133.1 S, m		
C-5'	134.4 S, m		
C-5′ CH ₃	20.0 Q, d	128	$^{3}J(\text{C-5'CH}_{3}, \text{H-6'}) 6.0$
C-6'	127.8 D, m	158	
C-7'	125.1 D, s	158	
C-8′.	123.9 D, m	162	
C-8a'	126.9 S, m		

a) Measured on a JEOL JNM GX 400 spectrometer. b) Capital and small letters in this column show splitting patterns due to one-bond and long-range 13 C $^{-1}$ H couplings, respectively.

Partial structure B, the remaining part of 3 other than the partial structures A and C, consisted of $C_8H_9No_3$, which is a common partial structure for 1, 2, and 3. Partial structure B contained a tetrasubstituted double bond that consisted of the C-7 and C-8 carbons. $^1H^{-1}H$ decoupling experiments and $^{13}C^{-1}H$ selective decoupling experiments on 3 showed the presence of a partial structure consisting of a methylene group (C-10: δ 35.9, H-10a: δ 2.25, d, H-10b: δ 2.51, d), a methine group (C-11: δ 45.3, H-11: δ 3.22, ddd), a hydroxymethine group (C-12: δ 77.0, H-12: δ 4.63, dd, 12-OH: δ 4.08, s) and an oxymethine group (C-13: δ 84.0, H-13: δ 55.5, d). LSPD experiments irradiating the H-13 (δ 5.55, d) or H-15 protons (δ 2.18, s) of 3 showed that the acetyl group was attached to the C-13 carbon. The presence of the acetyl group in 3 was also suggested by the result of negative ion FAB-MS of 3. Further, on irradiation of the H-13 proton, the doublet due to the C-7 carbon became a singlet, and the shape of the signal due to the C-8 carbon changed. Thus the C-13 carbon was shown to be connected to the C-7 or C-8 carbon. It was already shown that the C-7 carbon was attached to the N-16 nitrogen, C-6 carbon and C-8 carbon (double bond), so the C-13 carbon was confirmed to be connected to the C-8 carbon.

The catalytic hydrogenation of 3 with H₂ over PtO₂ gave a dihydro derivative 9. The ¹H-

TABLE IV. 1H-NMR Data for 1, 2, 3, 9 and 10

	1a)	7	3^{a}	6	10
Protons	δ, ppm J, Hz	δ , ppm J , Hz	δ, ppm J, Hz	δ , ppm J , Hz	δ, ppm J, Hz
	2.20 s	2.24 s	2.24 s	2.08 s	2.10 s
3	4.28 dd 19.8, 5.1				
	4.28 dd 19.8, 5.1	, , , ,	7 10 5	3 06 2	7.17.8
4 .		.528	1.19 8		2 11:
4 OH		12.40 br	3 00 5	3 78 s	3 80 s
4 OCH ₃	10.09 44 5 1 5 1	12 32 8	10 89 s	7.36 or 7.76	7.40
HN 6	10.07 dd 5.1, 5.1			7.36 or 7.76	7.40
10a	2.21 d 4.5	2.30	2.25 d 3.9		
10b	2.53 d 5.1	2.70	2.51 d 5.4		
10 CH,				1.20 d 4.7	1.10 d 6.5
	$3.23 \text{ ddd } 5.4, 5.1, 4.5^b$	3.36 m	3.22 ddd 5.8, 5.4, 3.9 ^{b)}	3.8	4.16 m
12	4.62 dd 5.4, 3.8	4.64 dd 4.8, 4.0	4.63 dd 5.8, 3.9	3.9	5.12 d 4.3
12 OH	3.98 s	3.96	4.08 s	3.9	
12 OCOCH,					1.98 s
13	5.53 d 3.8	5.50 d 4.0	5.55 d 3.9	5.36 s	5.58 s
15	2.19 s	2.18 s	2.18 s	2.16 s	2.20 s
16	8.54 s	8.20 br	8.50 s	8.16 br	8.32 br
	5.01 s	5.12 s	5.08 s	5.42 s	5.60 s
20	1.52 s	1.52 s	1.51 s	1.54 s	1.56 s
21a	2.84 d 4.4	2.80 d 4.3	2.80 d 4.3	2.70 d 4.3	2.72 d 4.3
21b	3.00 d 4.4	2.98 d 4.3	2.99 d 4.3	3.14 d 4.3	3.18 d 4.3
2′	7.93 d 2.6	7.94 d 2.9	7.94 d 2.4	8.02 d 2.9	7.96 d 2.9
3' OCH,	3.98 s	3.96 s	3.96 s	3.95 s	3.98 s
4′ ک	7.48 d 2.6	7.46 d 2.9	7.46 d 2.4	7.48 d 2.9	7.50 d 2.9
5' CH ₃	2.67 s	2.66 s	2.66 s	2.64 s	2.67 s
, , , , , , , , , , , , , , , , , , ,	7.34 dd 5.9, 3.3	7.32	7.35 dd 7.4, 2.4	7.32	7.36
7′	7.35 dd 5.9, 5.9	7.32	7.36 dd 7.4, 7.4	7.32	7.36
. ,8	8 56 24 50 33	8 54 44 70 36	8 56 dd 7.4, 2.4	8.64 m	8.64 m

a) Measured at 400 MHz. b) $J_{11,12}$, $J_{10b,11}$ and $J_{10a,11}$, respectively.

Fig. 4. ¹H NOEs for 3

Fig. 5. The Results of LSPD Experiments for 3

NMR of 9: δ 1.20 (10-CH₃), 3.80—3.90 (H-11), 7.76 or 7.36 (9-NH), and ¹³C-NMR of 9: δ 14.5 (10-CH₃), 57.3 (C-11) showed that the 9-NH and 10-CH₃ groups were newly formed while the 10-CH₂ group in 3 had disappeared. Acetylation of 9 with acetic anhydride and pyridine gave a diacetate 10 (Fig. 6). The ¹H-NMR data for 10 [δ 4.16 (11-H), 5.12 (12-H), 1.98 (12-OAc)] showed that the 12-OH group in 9 was acetylated. These results showed the presence of an aziridine ring consisting of the N-9 nitrogen, C-10 carbon and C-11 carbon in partial structure B. In the LSPD experiment irradiating the H-11 proton in 3, the shape of the signal due to the C-8 carbon changed, showing that the H-11 proton and C-8 carbon were separated by two or three bonds. Thus, the nitrogen at N-9 was shown to be connected to the carbon at C-8. Based on the above data, it was concluded that a 1-azabicyclo[3.1.0]hexane ring system was present in partial structure B.

The relative stereochemistry in the partial structure B was confirmed by the ¹H NOE experiments (Fig. 4). NOE enhancements were observed between the H-12 and H-11 protons (9%), H-15 and H-12 protons (6%), and H-15 and H-13 protons (4%), but not between the H-12 and H-13 protons. These data confirmed the relative configurations between the H-11 and H-12 protons (cis) and between the H-12 and H-13 protons (trans). NOE enhancements were also observed between the H-10a and H-13 protons (13%) and between the H-10b and H-11 protons (8%), which further confirmed the presence of the 1-azabicyclo[3.1.0]hexane ring system in the partial structure B. Thus, partial structure B, including the relative stereochemistry, was determined to be as depicted in Fig. 3.

The amide proton (5-NH) in 3 was observed at rather low field (δ 10.8) and that in 9 was observed at δ 7.76 or δ 7.36. This suggested that intramolecular hydrogen bonding was present between the 5-NH group and the nitrogen in the aziridine ring (N-9) in 3.

All of the data and considerations described above led to the structures 1, 2 and 3 as depicted in Fig. 1.

Experimental

General—All melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra were measured on a Hitachi 285 infrared spectrometer. UV spectra were recorded

on a Hitachi 200-20 spectrometer. FAB-MS were obtained on a JEOL JMS-DX303 mass spectrometer using 6 KeV xenon atom bombardment. Glycerol was used as the supporting matrix. EI-MS were also obtained on a JEOL JMS-DX303 mass spectrometer. NMR spectra were measured on a JEOL FX-90Q spectrometer or JEOL JNM GX-400 spectrometer, and unless otherwise stated, NMR spectra were measured at 90 MHz (¹H-NMR) or at 22.5 MHz (¹³C-NMR) in CDCl₃. Optical rotations were measured with a JASCO DIP-4 digital polarimeter.

Materials—The CHCl₃ extract from the fermentation broth of *Streptomyces griseofuscus* S42227 was used for the isolation of 1 and 2.¹⁾ The CHCl₃ extract cited above was also used as the source material of 5, 6 and 7.

Isolation of Azinomycins (1 and 2) and Related Metabolites (5, 6 and 7)—The CHCl₃ extract from the fermentation broth (16 l) was concentrated to 30 ml, and diluted with *n*-hexane (300 ml). The resultant precipitate was collected by centrifugation and extracted with diethyl ether (50 ml) to afford the diethyl ether-soluble fraction and insoluble fraction. The diethyl ether-soluble fraction was concentrated and chromatographed on silica gel (CHCl₃—MeOH 50:1 v/v) to give azinomycin A (1, 20 mg) from EtOAc as colorless plates. The diethyl ether-insoluble fraction was extracted with CHCl₃ (50 ml), and *n*-hexane was added gradually to this solution. The precipitate initially obtained was discarded and that obtained thereafter was collected by centrifugation to give azinomycin B (2, 120 mg) as a white amorphous solid. MS, ¹³C-NMR and ¹H-NMR data for 1 and 2 are shown in Tables I, II and IV, respectively.

The related substances present in the same fermentation broth were also extracted with $CHCl_3$. The $CHCl_3$ extract from the fermentation broth (200 l) was chromatographed on silica gel ($CHCl_3$ and $CHCl_3$ -MeOH 50:1 v/v). Firstly 6, then 5, 1 and 7 were eluted in that order. Each fraction containing 6, 5 and 7 was rechromatographed on silica gel using $CHCl_3$ -n-hexane (1:2 v/v), $CHCl_3$ -acetone (2:1 v/v) and $CHCl_3$ -acetone (4:1 v/v), respectively, to give 6 (15 mg), 5 (18 mg) and 7 (42 mg).

5: Colorless needles from CHCl₃-*n*-hexane, mp 153—154 °C. [α]_D²⁵ +48 (c=0.33, MeOH). IR (KBr): 1725, 1675 cm⁻¹. UV $\lambda_{\max}^{\text{MeOH}}$ nm (ϵ): 217 (46600), 245 (sh), 303 (3300), 343 (4900). ¹H-NMR: δ 1.52 (3H, s), 2.63 (3H, s), 2.76 (1H, d, J=4.3 Hz), 3.00 (1H, d, J=4.3 Hz), 5.20 (1H, s), 5.76 (1H, br), 6.14 (1H, br), 7.24—7.40 (2H), 7.42 (1H, d, J=2.9 Hz), 7.90 (1H, d, J=2.9 Hz), 8.62 (1H, dd, J=7.2, 5.4 Hz). ¹³C-NMR see Table II. *Anal*. Calcd for C₁₈H₁₉NO₅: C, 65.64; H, 5.82; N, 4.25. Found: C, 65.80; H, 5.85; N, 4.23. EI-MS m/z: 329 (M⁺).

6: Colorless needles from diethyl ether–n-hexane, mp 85—86 °C. IR (KBr): 1715 cm $^{-1}$. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (ε): 218 (70000), 245 (sh), 298 (6300), 340 (6800). 1 H-NMR δ : 2.63 (3H, s), 3.92 (3H, s), 3.96 (3H, s), 7.24—7.38 (2H), 7.40 (1H, d, J=2.7 Hz), 7.76 (1H, d, J=2.7 Hz), 8.56 (1H, dd, J=7.2, 4.7 Hz). 13 C-NMR see Table II. *Anal.* Calcd for C₁₄H₁₄O₃: C, 73.03; H, 6.13. Found: C, 73.23; H, 6.11. EI-MS m/z 230 (M $^{+}$). 6 was also obtained by chemical interconversion of 7. A solution of 7 (15 mg) in MeOH and 10% aqueous NaOH (1:1 v/v, 20 ml) was refluxed for 20 h. Then the solution was acidified with dil. HCl and extracted with CHCl₃. Excess CH₂N₂ was added to this CHCl₃ solution. The product was purified by chromatography on silica gel (CHCl₃–n-hexane 1:2 v/v) to give the methyl ester (12 mg). The 1 H-NMR, IR and thin-layer chromatography (TLC) of this ester were identical with those of 6.

7: Colorless needles from CHCl₃-n-hexane, mp 178—179 °C. IR (KBr): $1650 \,\mathrm{cm}^{-1}$. UV $\lambda_{\mathrm{max}}^{\mathrm{MeOH}}$ nm (ϵ): 225 (50700), 280 (4900), 292 (4900), 322 (2800), 335 (3400). 1 H-NMR δ : 2.62 (3H, s), 3.92 (3H, s), 5.90 (2H, br), 7.24—7.40 (4H), 8.12 (1H, m). 13 C-NMR see Table II. *Anal*. Calcd for C₁₃H₁₃NO₂: C, 72.54; H, 6.09; N, 6.51. Found: C, 72.71; H, 6.16; N, 6.63. EI-MS m/z: 215 (M $^{+}$).

Methylation of 2—Excess diazomethane was added to a solution of 2 (60 mg) in CHCl₃ (3 ml) at room temperature. After 10 min, the solution was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (CHCl₃-acetone 2:1 v/v) to give 3 (22 mg) as a white amorphous solid, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ): 217 (60000), 250 (31500), 344 (5400). ¹H-NMR see Table IV. ¹³C-NMR see Table III.

Reduction of 3—A solution of 3 (40 mg) in tetrahydrofuran (THF) (5 ml) was hydrogenated in the presence of PtO_2 at room temperature for an hour. It was filtered and the filtrate was evaporated. The residue was purified by column chromatography on silica gel (EtOAc-acetone 2:1 v/v) to give 9 (16 mg) as a white amorphous solid, FAB-MS (positive) m/z: 640 [M+H]⁺, 525, 309, 199. ¹H-NMR see Table IV. ¹³C-NMR see Table II.

Acetylation of 9—A solution of 9 (15 mg) in 0.5 ml of acetic anhydride and 3 ml of pyridine was stirred at room temperature for an hour. The product was extracted with CHCl₃ and purified by column chromatography on silica gel (EtOAc-acetone 3:1 v/v) to give 10 (9 mg) as a white amorphous solid, FAB-MS (positive) m/z: 682 [M+H]⁺, 567, 351, 199. ¹H-NMR see Table IV.

Acknowledgment The authors wish to thank the staff of JEOL Ltd. for the measurement of ¹H- and ¹³C-NMR on a JNM GX 400 spectrometer.

References and Notes

- 1) a) K. Nagaoka, M. Matsumoto, J. Oono, K. Yokoi, S. Ishizeki and T. Nakashima, J. Antibiot., accepted. b) S. Ishizeki, M. Ootsuka, K. Irinoda, K. Kukita, K. Nagaoka and T. Nakashima, ibid., accepted.
- 2) a) T. Hata, F. Koga, Y. Sano, K. Kanamori, A. Matsumae, R. Sugawara, T. Hoshi and T. Shima, J. Antibiot., 7, 107 (1954); b) M. Onda, Y. Konda, A. Noguchi and S. Ōmura, ibid., 22, 42 (1969); c) M. Onda, Y. Konda, A. Hatano, T. Hata and S. Ōmura, Chem. Pharm. Bull., 32, 2995 (1984).