Communications to the Editor

Chem. Pharm. Bull. 34(11)4889—4891(1986)

THE STRUCTURES OF AH₁₀ AND AH₁₁, NOBEL BI-PHENYLETHYLCHROMONES FROM AGALWOOD

Kiyoshi Iwagoe, ^a Tenji Konishi, ^a Shiu Kiyosawa, *, ^a Yasuo Shimada, ^b Kazumoto Miyahara, ^c and Toshio Kawasaki ^c Kyoto Pharmaceutical University, ^a Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607, Japan, Mitsuboshi Seiyaku Company, ^b 153, Gose-shi, Nara, 639-22, Japan, and Faucalty of Pharmaceutical Sciences, Setsunan University, ^c 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-01, Japan

New bi-2-(2-phenylethyl)chromones, tentatively named AH₁₀ and AH₁₁ were isolated from Agalwood "Jinko" and their structures were determined.

KEYWORDS—— bi-2-(2-phenylethyl)chromone; agalwood; Aquilariaceae;

1H-NMR: 13C-NMR

New bi-phenylethylchromones, AH_{10} and AH_{11} were isolated from the acetone extracts of agalwood "Jinko" from Kalimantan, along with other related compounds. This paper describes the characterization of these structures.

 AH_{10} (1), a white powder (mp 110°C), [α]_D -127.7° (MeOH) showed a molecular ion at m/z 566 in the FD-MS giving the molecular formula $C_{34}H_{30}O_8$. The IR (KBr) and UV (MeOH) spectra of 1 exhibited strong absorption maxima due to a r-pyrone ring (1662, 1639, 1610, and 1582 cm⁻¹; 241 nm, ϵ =35818). The ¹H-NMR spectrum (400 MHz, DMSO-d_c) showed the presence of one pair of proton signals at δ 6.16 and 6.22 (each s, 3-H) and two sets of phenylethyl groups, indicating the structure bi-2-(2-phenylethyl)chromone derivative for $\underline{1}$, considering the molecular weight. One unit of the dimer was considered to be agarotetrol 2) on the basis of four methine proton signals indicating a hexenyl ring structure of 5/6 trans, 6/7 cis, and 7/8 trans in accordance with the vicinal coupling systems at δ 3.89, 4.27, 4.59, and 5.33 (Table I). The doublet signal of the methine proton at δ 5.33 should be assigned to 5-H because of the downfield position, considered to result from the bonding of the ether at C_5 to another monomeric unit. The assignment of 5-H is supported by the absence of the proton signal of 5-OH which should be found in a field lower than the other three hydroxylic protons at C_6 , C_7 and C_8 . This is because of the intramolecular bonding with 4-C=O as displayed by ¹H-NMR spectra of agarotetrol and isoagarotetrol. ^{1b)} Furthermore, the possibility of the hydrogen bond between 4-C=O and 5-OH was not present in the ¹³C-NMR spectrum, which exhibited chemical shift at the carbon 4-C=O about 2 ppm upfield from that of agarotetrol (Table II). 1b) The other methine protons were assigned on the basis of the signal of 5-H together with three hydroxyl protons which showed upfield displacement as the temperature increased, as shown in Table I.

Acetylation (Ac₂O-pyridine) of <u>1</u> afforded triacetate (<u>2</u>), a white powder (mp 82-83°C), [α]_D -43.6° (MeOH), ¹H-NMR (CDCl₃, δ):2.02, 2.11, 2.12 (each s, CH₃COO), 5.40 (d, <u>J</u>=7.2, 5-H), 5.56 (dd, <u>J</u>=4.1,2.0, 7-H), 5.64 (dd, <u>J</u>=7.2,2.0, 6-H), 6.08 (d, <u>J</u>=4.1, 8-H). Therefore, the acetylation did not convert the half-chair form in the hexenyl ring of <u>1</u> from (<u>5S</u>)-5e'-OH to (<u>5S</u>)-5a'-OAc. ³⁾ Subsequently, the structure of one monomeric unit (Unit A) was found to be agarotetrol linked at C₅ by the ether bond to another monomeric unit (Unit B).

The structure of Unit B was characterized as 6-alkoxy-2-(2-phenylethyl)chromone, based on the appearance of three proton signals of the aromatic ABX system similar to that of AH_4 , ^{1a)} a 6-methoxy derivative of 2-(2-phenylethyl)chromone, in the ¹H- and ¹³C-NMR spectra of 1 (Tables I and II).

Accordingly, the structure of AH_{10} was elucidated as $(5\underline{S}, 6\underline{S}, 7\underline{R}, 8\underline{S})$ -2-(2-phenylethyl-6,7,8-trihydroxy-5,6,7,8-tetrahydro-5-[2-(2-phenylethyl)chromonyl-6-oxy]chromone, 1.

AH₁₁ (3), a pale yellowish powder (mp 239-242°C) exhibited the absorptions due to the r-pyrone ring in the IR (KBr):1640, 1600, 1580 cm⁻¹ spectrum and the UV λ_{max} (MeOH):234 nm (ϵ =42977) spectrum. The ¹H-NMR spectrum (80 MHz, DMSO-d₆) showed that 3 is another dimeric derivative of 2-(2-phenylethyl)chromone on the basis of two singlet signals of 3-H at δ 5.78 and 5.86.

Acetylation (Ac_2O -pyridine) of 3 afforded diacetate (4), colorless needles, mp 240°C, FD-MS m/z: M⁺ 614, ¹H-NMR (400 MHz, CDCl₃, δ): 1.86, 2.42 (each s, CH₃COO), 2.87, 3.01 (each m, CH₂CH₂), 5.90, 5.93 (each s, 3-H), 7.20, 7.22, and 7.30 (2H, 4H, and 4H, respectively, each m, aromatic H). Two sets of the ortho coupling signals at δ 6.97, 7.36 (each d, \underline{J} =8.0, 6- and 7-H, Unit C), 7.39 and 7.50 (each d, \underline{J} =8.8, 7- and 8-H, Unit D), due to the protons of the chromone ring, were assigned by comparing them with those of AH₃ and AH₇ bearing 6-hydroxyl and 5,8-dihydroxyl groups, respectively. Therefore, it appeares that compound 3 has a dimeric structure of 2-(2-phenylethyl)chromone linked by a C-C bond at each C₅, and two hydroxyl groups should be separately situated in either monomeric unit at the positions of C₆ and C₈. This structure was consistent with the result of 2D-NOSYN of 4, suggesting the presence of a 6-acetoxyl function (δ 1.85) which exhibited cross peaks with 3-, 6- and 7-H attached to another chromone ring having an 8-acetoxyl group. Further, in the 13 C-NMR spectrum of 4 the chemical shifts of C₅-C₁₀ in each chromone ring showed excellent agreement with the calculated values as shown in Table II.

Accordingly, AH₁₁ was determined to be 2,2'-di-(2-phenylethy1)-8,6'-dihydroxy-5,5'-bichromone, 3.

Table I. ¹H-NMR data for AH₁₀ in DMSO-d₆ (ppm, 25°C)

	Unit A	Unit B	
5-H 6-H	5.33 (d, <u>J</u> =8.2 Hz) 4.27 (ddd, <u>J</u> =8.2,6.5,2.0 Hz)	7.78 (d, \underline{J} =3.0 Hz)	
7-н 8-н	3.89 (ddd, \overline{J} =4.2,3.5,2.0 Hz) 4.59 (dd, \underline{J} =5.5,3.5 Hz)	7.62 (dd, <u>J</u> =8.5,3.0 Hz) 7.66 (d, <u>J</u> =8.5 Hz)	
6-ОН 7-ОН	5.65 (d, J=6.5 Hz) (5.49)*)	Unit A and B	
7-OH 8-OH	5.35 (d, \overline{J} =4.2 Hz) (5.29) 5.51 (d, \overline{J} =5.5 Hz) (5.45)	CH ₂ CH ₂ 2.61 (m,4H), 3.02 (m,4H)	
		3-H 6.16 (s,1H), 6.22 (s,1H)	
		$C_{6}^{H}_{5}$ 6.98 (2H), 7.18 (4H), 7.27 (4H)	

^{*)} Chemical shifts obtained at 50°C are indicated in parentheses.

Table II. $^{13}\text{C-NMR}$ Data for AH_{10} , AH_{11} and AH_{11} Diacetate

	AH ₁₀ (1) a)		AH ₁₁ (<u>3</u>)		AH ₁₁ Diacetate(<u>4</u>)	
Carbon	Unit A	Unit B	Unit C	Unit D	Unit C	Unit D
2,2'	168.7	168.3	166.5	166.5	166.8	167.6
3,3'	113.8	110.5	109.5	109.8	110.7	111.1
4,4'	179.7	177.5	177.5	177.5	177.4	L 177.4
5,5'	78.9	109.6	129.2	122.9	134.7(135.6)	b) 128.9 (131.4)
6,6'	71.0	157.7	127.1	150.3	125.6 (124.6)	145.2(146.6)
7,7'	74.7	124.9	121.1	117.6	128.3(127.2)	125.6(127.2)
8,8'	66.4	119.7	144.9	116.9	139.4 (139.4)	118.6(117.4)
9,9'	160.7	151.9	151.0	144.9	149.3(149.2)	155.1 (153.1)
10,10'	123.7	124.7	122.1	126.2	123.3(123.5)	125.6 (123.5)
1"	140.3	140.5	140.2	140.2	140.5	140.6
2",6"	128.8	128.9	128.4	128.4	128.9	128.9
3",5"	128.5	128.7	128.3	128.3	128.7	128.7
4 "	126.6	126.8	126.2	126.2	126.7	126.7
OH OH	32.6	32.9	31.9	31.9	32.6	32.7
сн ₂ сн ₂	35.2	35.7	34.3	34.3	35.4	35.4
<u>сн</u> 3соо				· ·	20.1,177.4	20.4,177.7

a) Assignments were established by comparing with the data for agarotetrol $(AH_1)^{1b}$ and AH_4 . 1a)

It is worthy of note that the structures of AH_{10} and AH_{11} , as the first of biphenylethylchromones were made up in the form of ether or C-C linkage between two 2-(2-phenylethyl)chromones, hydroxylated or hydrogenated.

ACKNOWLEDGEMENTS The authors are grateful to Mr. M. Nishi of Setsunan University for the $^1\text{H-NMR}$ and 2D-NOSYN spectra. Thanks are also due to Mr. Fujiwara ($^1\text{H-}$ and $^{13}\text{C-NMR})$ and Miss M. Takahashi (FD-MS) of Kyoto Pharmaceutical University.

REFERENCES AND NOTES

- a) Y. Shimada, T. Tominaga, T. Konishi, and S. Kiyosawa, Chem. Pharm. Bull., 30, 3791 (1982);
 b) Y. Shimada, T. Konishi, S. Kiyosawa, M. Nishi, K. Miyahara, and T. Kawasaki, Chem. Pharm. Bull., 34, 2766 (1986);
 c) S. Shimada, T. Konishi, S. Kiyosawa, M. Nishi, K. Miyahara, and T. Kawasaki, The 106th Annual Meeting of the Pharmaceutical Society of Japan, Chiba, April, 1986. H-NMR (80 MHz, CDCl₃, δ) of 5,8-diacetoxy-2-(2-phenylethyl)chromone (AH₇ 5,8-diacetate): 6.95, 7.38 (each d, <u>J</u>=8.6 Hz, 6- and 7-H).
- 2) ¹H-NMR (400 MHz, DMSO-d₆, δ) of agarotetrol (AH₁): 3.74 (ddd, <u>J</u>=4.0,4.0,2.0 Hz, 7-H), 3.84 (ddd, <u>J</u>=7.5,5.5,2.0 Hz, 6-H), 4.32 (dd, <u>J</u>=7.5,6.0 Hz, 5-H), 4.48 (t, <u>J</u>=4.0,4.0 Hz, 8-H), 4.96 (d, <u>J</u>=4.0 Hz, 7-OH), 5.09 (d, <u>J</u>=5.5 Hz, 6-OH), 5.18 (d, <u>J</u>=4.0, 8-OH), 5.81 (d, <u>J</u>=6.0 Hz, 5-OH).
- 3) E. Yoshii, T. Koizumi, and T. Oribe, Tetrahedron Lett., 41, 3921 (1978).
- 4) D. F. Ewing, Org. Magn. Reson., <u>12</u>, 499 (1979).

(Received September 12, 1986)

b) Calculated values 1,4) are indicated in parentheses.