Chem. Pharm. Bull. 34(4)1447—1458(1986)

Cross-Coupling Reaction of Chloropyrazines with Acetylenes

YASUO AKITA, AKIRA INOUE, and AKIHIRO OHTA*

Tokyo College of Pharmacy, 1432–1 Horinouchi, Hachioji, Tokyo 192–03, Japan

(Received August 6, 1985)

Various chloropyrazines were subjected to cross-coupling reaction with acetylenes, such as phenylacetylene, 1-hexyne and propargyl alcohol, in the presence of palladium catalysts, to give the corresponding coupling products in good yields. It was found that tetrakis(triphenylphosphine)-palladium can catalyze the reaction of chloro-alkylpyrazines, and that a combination of bis-(triphenylphosphine)-palladium dichloride and copper(I) iodide preferentially catalyzes the reaction of chloro-phenylpyrazines.

Keywords—cross-coupling reaction; chloropyrazine; acetylene; palladium catalyst

Palladium-catalyzed cross-coupling reactions are useful for the alkenylation and alkynylation of hetero-aromatic rings. $^{1-4)}$ We have recently reported that the reaction of chloropyrazines with potassium cyanide is facilitated by tetrakis(triphenylphosphine)palladium, giving cyanopyrazines in good yields, $^{5)}$ and that (Z)- and (E)-3,6-dimethyl-2-styrylpyrazines (13 and 14), isolated from the Argentine ant, $^{6)}$ can be readily synthesized from 2-chloro-3,6-dimethylpyrazine ($(1a)^{7)}$) with the aid of a palladium catalyst. Methylation of pyrazines was also accomplished by using trimethylaluminum in the presence of the palladium catalyst. As a continuation of our work on reactions of pyrazines, this paper deals with the cross-coupling reactions of some chloropyrazines and chloropyrazine N-oxides with acetylenes, such as phenylacetylene, 1-hexyne, and propargyl alcohol, and presents full details of work previously described in a brief communication.

As a result of investigations on suitable reaction conditions, the coupling reaction of 2-chloro-3,6-dialkylpyrazines with phenylacetylene was achieved in the presence of tetrakis(triphenylphosphine)palladium and potassium acetate under heating at $100\,^{\circ}$ C for 2 h in N,N-dimethylformamide (DMF), to give the coupling products, as shown in Table I. However, this palladium catalyst was not effective for the phenylethynylation of 2-chloro-diphenylpyrazines. For instance, the reaction of 2-chloro-3,6-diphenylpyrazine (1e)¹⁰⁾ under the same conditions as above yielded many products, which could not be separated from each other. Accordingly, a combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide was adopted for the reaction of 2-chloro-diphenylpyrazines, and the expected reaction occurred to afford the products in satisfactory yields. On the other hand, this combination gave the coupling product from 2-chloro-3,6-diisobutylpyrazine (1d)¹¹⁾ in only 10% yield. In conclusion, tetrakis(triphenylphosphine)palladium can catalyze the coupling reaction of 2-chloro-3,6-dialkylpyrazines, while the combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide preferentially catalyzes the reaction of 2-chloro-diphenylpyrazines, although the reason is not clear.

In the previous communication,⁸⁾ we described the conversion of 3,6-dimethyl-2-phenylethynylpyrazine (4a) to (Z)- and (E)-3,6-dimethyl-2-styrylpyrazines (13 and 14), which have been isolated from the Argentine ant, *Iridomyrmex humilis*.⁶⁾ In the present paper, the full details are presented. Namely, by the selective hydrogenation of 4a with the Lindlar

TABLE I. Reaction of Monochloropyrazines with Acetylenes

	Subs	strate		G . 1	Prod	luct	Pro	duct	Pro	duct
	R_1	R_2	R_3	Catalyst		Yield (%)		Yield (%)		Yield (%)
1a ⁷⁾	CH ₃	Н	CH ₃	A	4a	84	5a	76	6a	87
1b ¹⁷⁾	C_2H_5	Н	C_2H_5	Α	4b	78	5b	49	6b	65
1c ¹⁸⁾	$iso-C_3H_7$	Н	$iso-C_3H_7$	Α	4c	82	5c	65	6c	77
1d ¹¹⁾	iso-C ₄ H ₉	Н	$iso-C_4H_9$	Α	4d	84	5d	74	6d	61
1e ¹⁰⁾	C_6H_5	Н	C_6H_5	В	4 e	67	5e	91	6e	71
1f ¹⁹⁾	C_6H_5	C_6H_5	Н	В	4f	67	5f	85	6f	86
$1g^{20)}$	Н	C_6H_5	C_6H_5	В	4g	52	5g	96	6g	44

Catalyst A, Pd(PPh₃)₄; B, Pd(PPh₃)₂Cl₂-CuI.

Chart 1

catalyst, 13 was obtained in quantitative yield. On the other hand, the reduction of 4a with lithium aluminum hydride in refluxing tetrahydrofuran $(THF)^{12}$ gave a mixture of the (Z)-and (E)-forms, which were separated from each other by silica gel column chromatography. The spectral data of 13 and 14 were identical with those of the natural products. (E)-(

The coupling reaction of 2-chloro-3,6-dialkylpyrazines with 1-hexyne and propargyl alcohol was also successfully achieved under the same conditions as before. The combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide was also favorable for the reaction of 2-chloro-diphenylpyrazines.

Next, 2-chloropyrazine 1- and 4-oxides were subjected to the coupling reaction with acetylenes under the same conditions as before. Upon treatment of 2-chloro-3,6-dialkylpyrazine 4-oxides with phenylacetylene, 1-hexyne, and propargyl alcohol in the presence of tetrakis(triphenylphosphine)palladium, the expected products were obtained in good yields. The reactions of two 2-chloro-diphenylpyrazine 4-oxides, 2-chloro-3,6-diphenylpyrazine 4-oxide (2e)¹⁰⁾ and 2-chloro-5,6-diphenylpyrazine 4-oxide (2g),¹³⁾ were also achieved by using the combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide, except for the reaction of 2e with propargyl alcohol. As the reaction of 2g

TABLE II. Reaction of 2-Chloropyrazine 4-Oxides with Acetylenes

$$\begin{array}{c} O \\ R_2 \\ N \end{array} \begin{array}{c} R_1 \\ N \end{array} \begin{array}{c} R_1 \\ R_3 \end{array} \begin{array}{c} RC \equiv CH \\ Pd \ cat. \\ 100 \ ^{\circ}C, \ 2h \end{array} \begin{array}{c} R_2 \\ R_3 \end{array} \begin{array}{c} N \\ N \end{array} \begin{array}{c} R_1 \\ C \equiv CR \end{array}$$

$$\begin{array}{c} C = CR \\ R_3 \end{array} \begin{array}{c} R_1 \\ R_1 \\ R_2 \end{array} \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \begin{array}{c} R_1 \\ R_2$$

	Subs	strate		Catalyat	Prod	luct	Pro	duct	Pro	duct
	R ₁	R_2	R_3	Catalyst		Yield (%)		Yield (%)		Yield (%
2a ²¹⁾	CH ₃	. Н	CH ₃	A	7a	74	8a	44	9a	73
2b ²²⁾	C_2H_5	Н	C_2H_5	Α	7b	95	8b	72	9b	78
2c ²³⁾	$iso-C_3H_7$	Н	$iso-C_3H_7$	Α	7c	89	8c	51	9c	85
2d ¹¹⁾	iso-C ₄ H ₉	Н	iso-C ₄ H ₉	Α	7d	86	8d	72	9d	65
2e ¹⁰⁾	C_6H_5	Н	C_6H_5	В	7e	66 ^{a)}	8e	82 ^{a)}	R	ecovery
2g ¹³⁾	H	C_6H_5	C_6H_5	В	7g	39	8g	$66^{a)}$	9g	$25^{a)}$
-			~ 3		J	$77^{b)}$	Ü			

Catalyst A, Pd(PPh₃)₄; B, Pd(PPh₃)₂Cl₂-CuI. a) Heated for 3 h. b) Heated at 70 °C.

Chart 2

with phenylacetylene gave the best result at 70 °C, those with 1-hexyne and propargyl alcohol were carried out at the same temperature. In all cases, the N-oxide groups were not affected.

On the other hand, the reaction of 2-chloro-3,6-diisobutylpyrazine 1-oxide (15)¹⁴⁾ with phenylacetylene was troublesome. When the reaction mixture was heated at 100 °C for 2 h, the reaction gave a mixture of the starting material (80%) and the coupling compound (16) (10%). By extending the reaction time to 12 h, the yield of the product was elevated to 18%. However, under stronger conditions, at 130 °C for 2 h, the yields of the product and the starting material decreased to 8% and 65%, respectively. The reaction under reflux resulted in many spots on the thin layer chromatography plate. When the base was replaced by potassium carbonate, the situation was not improved. Efforts were made to find optimum conditions at 100 and 130 °C. However, the yield of the product did not exceed 11%.

No coupling product was obtained from 2-chloro-3,5-diphenylpyrazine 1-oxide¹⁵⁾ on reaction with three kinds of acetylenes, but the starting material was recovered in ca. 55% yield. Namely, 2-chloropyrazine 1-oxides reacted sluggishly in this system.

The cross-coupling reaction of 3,6-dialkyl-2,5-dichloropyrazines with phenylacetylene, 1-hexyne, and propargyl alcohol also gave the expected products. In order to find the optimum reaction conditions, 2,5-dichloro-3,6-diisobutylpyrazine (3d)¹¹⁾ was treated with phenylacetylene under various conditions. In anticipation of the occurrence of mono-substitution, 1 equimolar phenylacetylene was employed at 100 °C. The result fell short of our expectation, and a mixture of 2-chloro-3,6-diisobutyl-5-phenylethynylpyrazine (17) (31%), 2,5-bis-(phenylethynyl)-3,6-diisobutylpyrazine (10d) (18%), and the starting material (3d) (43%)

TABLE III. Reaction of Dichloropyrazines with Phenylacetylene

$$\begin{array}{c|c}
R_2 & & \\
R_3 & & \\
\end{array}
 \begin{array}{c}
R_1 & & \\
Cl & & \\
\hline
 \begin{array}{c}
Pd \text{ cat.} \\
100 \text{ °C. 2 h}
\end{array}
 \begin{array}{c}
R_2 & \\
R_3 & \\
\end{array}
 \begin{array}{c}
N & \\
C = CC_6H_5
\end{array}$$

3a---g

10a---g

	Su R _i	bstrate R ₂	R ₃	Catalyst		R_1	Product R ₂	R_3	Yield (%)
3a ⁷⁾	CH ₃	Cl	CH ₃	A	10a	CH ₃	$C_6H_5C\equiv C$	CH ₃	71
3b ¹⁸⁾	C_2H_5	Cl	C_2H_5	Α	10b	C_2H_5	$C_6H_5C\equiv C$	C_2H_5	61
3c18)	iso-C ₃ H ₇	Cl	iso-C ₃ H ₇	Α	10c	$iso-C_3H_7$	$C_6H_5C\equiv C$	$iso-C_3H_7$	90
3d ¹¹⁾	iso-C ₄ H ₉	Cl	iso-C ₄ H ₉	Α	10d	$iso-C_4H_9$	$C_6H_5C\equiv C$	iso-C ₄ H ₉	80
3e ¹⁰⁾	C_6H_5	Cl	C_6H_5	В	10e	C_6H_5	$C_6H_5C\equiv C$	C_6H_5	42
3f 15)	C_6H_5	C_6H_5	Cl	В	10f	C_6H_5	C_6H_5	$C_6H_5C\equiv C$	40
$3g^{16)}$	Cl	C_6H_5	C_6H_5	В	10g	$C_6H_5C\equiv C$	C_6H_5	C_6H_5	46

Catalyst A, Pd(PPh₃)₄; B, Pd(PPh₃)₂Cl₂-CuI.

TABLE IV. Reaction of Dichloropyrazines with 1-Hexyne

$$R_{2} \stackrel{N}{\swarrow} R_{1} \stackrel{C_{4}H_{9}C \equiv CH}{\xrightarrow{Pd \text{ cat.}}} R_{2} \stackrel{N}{\swarrow} R_{1} \stackrel{R_{1}}{\swarrow} C \equiv CC_{4}H_{9}$$

3a—;

11a—g

	Sul	bstrate		Catalyst			Product		Yield
	R_1	R_2	R_3	Catalyst		R_1	R_2	R_3	(%)
3a ⁷⁾	CH ₃	·Cl	CH ₃	A	11a	CH ₃	$C_4H_9C\equiv C$	CH ₃	56
3b ¹⁸⁾	C_2H_5	Cl	C_2H_5	Α	11b	C_2H_5	$C_4H_9C \equiv C$	C_2H_5	59
3c ¹⁸⁾	$iso-C_3H_7$	Cl	$iso-C_3H_7$	Α	11c	$iso-C_3H_7$	$C_4H_9C\equiv C$	$iso-C_3H_7$	78
3d11)	$iso-C_4H_9$	Cl	$iso-C_4H_9$	Α	11d	$iso-C_4H_9$	$C_4H_9C \equiv C$	$iso-C_4H_9$	85
3e ¹⁰⁾	C_6H_5	Cl	C_6H_5	В	11e	C_6H_5	$C_4H_9C\equiv C$	C_6H_5	77
3f 15)	C_6H_5	C_6H_5	Cl	В	11f	C_6H_5	C_6H_5	$C_4H_9C\equiv C$	82
3g ¹⁶⁾	Cl	C_6H_5	C_6H_5	В	11g	$C_4H_9C\equiv C$	C_6H_5	C_6H_5	81

Catalyst A, Pd(PPh₃)₄; B, Pd(PPh₃)₂Cl₂-CuI.

was obtained. Accordingly, with the object of replacing two chlorine atoms, 2.4 equimolar phenylacetylene was used, and the expected product was obtained in satisfactory yields. Based on these results, 2.4 equimolar acetylenes were used in all cases; the results are shown in Tables III, IV, and V.

Among the reactions of dichloro-diphenylpyrazines, that with 1-hexyne was carried out at 70 °C and that with propargyl alcohol at 50 °C, because the formation of many products was observed at higher temperatures. In the case of the reactions of 2,5-dichloro-3,6-diphenylpyrazine (3e)¹⁰⁾ and 2,6-dichloro-3,5-diphenylpyrazine (3f)¹⁵⁾ with propargyl alcohol, the simultaneous formation of mono- and disubstitution product was always observed at 50 °C, even with 2.4 equimolar propargyl alcohol. On the other hand, in the case of 2,3-dichloro-5,6-diphenylpyrazine (3g),¹⁶⁾ only one chlorine atom was replaced by the acetylenic residue to give 3-(5-chloro-3,6-diphenylpyrazin-2-yl)propargyl alcohol (12g') (87%) under the same conditions as in the other cases.

TABLE V. Reaction of Dichloropyrazines with Propargyl Alcohol

$$R_{2} \nearrow N \nearrow R_{1} \xrightarrow{HC \equiv CCH_{2}OH} R_{2} \nearrow N \nearrow R_{1}$$

$$R_{3} \nearrow N \nearrow C \equiv CCH_{2}OH$$

$$R_{3} \nearrow N \nearrow C \equiv CCH_{2}OH$$

3a—g 12a—g

	Sub	strate		Catalant			Product		Yield
	R_1	R_2	R_3	Catalyst		R_1	R ₂	R ₃	(%)
3a ⁷⁾	CH ₃	Cl	CH_3	Α	12a	CH ₃	$HOCH_2C \equiv C$	CH ₃	74
3b ¹⁸⁾	C_2H_5	Cl	C_2H_5	Α	12b	C_2H_5	$HOCH_2C \equiv C$	C_2H_5	74
3c18)	iso-C ₃ H ₇	C1	iso-C ₃ H ₇	Α	12c	$iso-C_3H_7$	$HOCH_2C \equiv C$	$iso-C_3H_7$	61
$3d^{11)}$	iso-C ₄ H ₉	Cl	iso-C ₄ H ₉	Α	12d	$iso-C_4H_9$	$HOCH_2C \equiv C$	iso-C ₄ H ₉	72
3e ¹⁰⁾	C_6H_5	Cl	C_6H_5	B	12e	C_6H_5	$HOCH_2C \equiv C$	C_6H_5	42
	0 0				12e'	C_6H_5	Cl	C_6H_5	$26 (22)^{a}$
3f 15)	C_6H_5	C_6H_5	C1	В	12f	C_6H_5	C_6H_5	$HOCH_2C \equiv C$	21
	.				12f '	C_6H_5	C_6H_5	Cl	$43 \ (19)^{a}$
3g ¹⁶⁾	. C l	C_6H_5	C_6H_5	В	12g	$HOCH_2C \equiv C$	C_6H_5	C_6H_5	Advantation .
-		0 0	3 3		12g′	CĨ	C_6H_5	C_6H_5	$87 (10)^{a}$

Catalyst A, Pd(PPh₃)₄; B, Pd(PPh₃)₂Cl₂-CuI. a) The starting material.

Consequently, the cross-coupling reactions of chloropyrazines with several types of acetylenes using palladium catalysts proceeded in satisfactory yields. Although tetrakis-(triphenylphosphine)palladium is effective in most cases, a combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide can also serve in some cases. A good choice of catalyst is important in this reaction system.

Experimental

All melting and boiling points are uncorrected. In the case of boiling points, the oil bath temperature was recorded. Infrared spectra (IR) were taken on a Shimadzu IR-400 spectrometer, and proton nuclear magnetic resonance spectra (1 H-NMR) on an Varian EM-390 instrument in CDCl₃, except in a few cases (1 2a—e, in DMSO- 1 d₆), with tetramethylsilane as an internal standard. High-resolution mass spectra (MS) were obtained with a Hitachi M-80 spectrometer. All reactions were carried out under an argon stream. For silica gel column chromatography, Wakogel C-200 (Wako Pure Chemical Industries, Ltd., Tokyo) was used.

- a) General Procedure for Reaction of 2-Chloro-3,6-dialkylpyrazines and Their N-Oxides with Acetylenes—A mixture of a 2-chloro-3,6-dialkylpyrazine (2 mmol), an acetylenic compound (3 mmol), CH₃COOK (294 mg, 3 mmol), and Pd(PPh₃)₄ (116 mg, 0.1 mmol) in DMF (5 ml) was heated at $100\,^{\circ}$ C for 2 h. After removal of the solvent by distillation in vacuo, the residue was triturated with H₂O (20 ml) and extracted with Et₂O (15 ml × 3). The Et₂O layer was dried over Na₂SO₄ and concentrated. The crude product was purified by silica gel column chromatography using a mixture of hexane and AcOEt. In the case of the 4-oxides, 1 mmol of the substrate was reacted with the corresponding amounts of the reagents in the same way. The reaction of 2-chloro-3,6-diisobutylpyrazine 1-oxide (15) (242 mg, 1 mmol) with phenylacetylene (153 mg, 1.5 mmol) was achieved under the same conditions.
- b) General Procedure for Reaction of 2-Chloro-diphenylpyrazines and Their 4-Oxides with Acetylenes—Catalytic amounts of Pd(PPh₃)₂Cl₂ (7 mg, 0.01 mmol) and CuI (10 mg, 0.05 mmol) were added to a solution of a 2-chloro-diphenylpyrazine or an N-oxide (1 mmol), an acetylenic compound (1.5 mmol), and CH₃COOK (147 mg, 1.5 mmol) in DMF (5 ml). The mixture was heated at 100 °C for 2 h and worked up as described before.
- c) Hydrogenation of 3,6-Dimethyl-2-phenylethynylpyrazine (4a) with the Lindlar Catalyst—A hexane solution (20 ml) of 4a (416 mg, 2 mmol) was stirred in a stream of hydrogen in the presence of the catalyst (30 mg). The catalyst was removed by filtration and the filtrate was evaporated to dryness *in vacuo*. The resulting oil was then purified by distillation under reduced pressure to give 13 (408 mg, 97%).
- (Z)-2,5-Dimethyl-3-styrylpyrazine (13): Colorless oil, bp 108—115 °C/3 Torr. High-resolution MS: Calcd for $C_{14}H_{14}N_2$: 210.1156. Obsd: 210.1148. MS m/e: 210 (M⁺). ¹H-NMR δ : 2.26 (3H, s, CH₃), 2.46 (3H, s, CH₃), 6.62 (1H, d, J=11 Hz, CH=CH), 6.86 (1H, d, J=11 Hz, CH=CH), 6.69—7.40 (5H, m, benzene H), 8.21 (1H, s, pyrazine H).

TABLE VI. Properties of Alkynylpyrazines

							A STATE OF THE PROPERTY OF THE
Compound	bp (°C/Torr) or mp (°C, recryst.	Formula	Anz	Analysis (%) Calcd (Found)	(þu	IR $(C \equiv C) \text{ cm}^{-1}$	¹ H-NMR (δ, ppm)
,	from)		C	H	Z	(neat of NDI)	
4a	130—134/1	$C_{14}H_{12}N_2$	80.74	5.81	13.45	2245	2.52 (3H, s), 2.71 (3H, s), 7.24—7.46 (3H, m),
;			(80.79	5.96	13.35)	22.40	7.46—7.70 (2H, m), 8.22 (1H, s)
4	131—137/2	$C_{16}H_{16}N_2$	81.32	6.83	11.86	7740	7.38—8.00 (5H, m), 8.50 (1H, s)
4	119—124/1	$C_{18}H_{20}N_2$	81.78	7.63	10.60	2220	1.33 (12H, d), 3.12 (1H, m), 3.70 (1H, m),
			(81.68	7.54	10.58)		7.33—7.90 (5H, m), 8.47 (1H, s)
4	138 - 142/1	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_2$	82.14	8.27	9.58	2220	0.95 (6H, d), 1.00 (6H, d), 2.17 (2H, m), 2.67 (2H, d),
			(82.29	8.30	9.59)		2.95 (2H, d), 7.20—7.80 (5H, m), 8.23 (1H, s)
4	153 - 154,	$C_{24}H_{16}N_2$	86.72	4.85	8.43	2230	7.20—7.70 (11H, m), 7.90—8.33 (4H, m), 9.05 (1H, s)
	MeOH		(86.51	4.78	8.33)		
4f	122 - 124,	$C_{24}H_{16}N_2$	86.72	4.85	8.43	2230	7.20—7.60 (11H, m), 8.00—8.24 (4H, m), 8.96 (1H, s)
	MeOH		(86.73	4.87	8.45)		
. 2	164—165, MeOH	$C_{24}H_{16}N_2$	86.72	4.85	8.43	2225	7.20—7.80 (15H, m), 8.80 (1H, s)
	$(173-175)^{24}$		(86.48	4.95	8.26)		
5a	83—86/1	$\mathrm{C_{12}H_{16}N_{2}}$	76.55	8.57	14.88	2250	0.97 (3H, t), 1.63 (4H, m), 2.47 (3H, s), 2.53 (2H, t),
	•		(76.36	8.55	14.78)		2.67 (3H, s), 8.45 (1H, s)
Sb	94—99/1	$\mathrm{C_{14}H_{20}N_2}$	77.73	9.32	12.95	2250	0.93 (3H, t), 1.30 (6H, t), 1.33—1.87 (4H, m), 2.50
	•	1	(77.74	9.41	12.97)		(2H, t), 2.77 (2H, q), 2.98 (2H, q), 8.37 (1H, s)
3 c	96—102/1	$\mathrm{C_{16}H_{24}N_{2}}$	78.63	9.90	11.46	2230	0.97 (3H, t), 1.32 (6H, d), 1.33 (6H, d), 1.63 (4H, m),
			(78.67	10.00	11.64)		2.53 (2H, t), 3.08 (1H, m), 3.57 (1H, m), 8.37 (1H, s)

P S	107—114/1	$\mathrm{C_{18}H_{28}N_2}$	79.36	10.36	10.28	2240	0.85—1.08 (3H, m), 0.93 (6H, d), 0.97 (6H, d), 1.60
			(79.44	10.34	10.15)		(4H, m), 2.18 (2H, m), 2.53 (2H, t), 2.62 (2H, d), 2.83 (2H, d), 8.23 (1H, s)
S.	110—111.	$C_{j}H_{j0}N_{j}$	84.58	6.45	8.97	2250	0.93 (3H, t), 1.50 (4H, m), 2.46 (2H, t), 7.52 (6H, m),
;	hexane		(84.39	6.45	8.97)		8.12 (4H, m), 9.05 (1H, s)
2 £	71—73,	$C_{22}H_{20}N_2$	84.58	6.45	8.97	2240	0.90 (3H, t), 1.52 (4H, m), 2.47 (2H, t), 7.33—7.67
	MeOH-H,0		(84.59	6.48	(66.8		(6H, m), 8.00—8.33 (4H, m), 8.98 (1H, s)
59	174 - 178/0.01	$C_{22}H_{20}N_2$	84.58	6.45	8.97	2250	0.96 (3H, t), 1.63 (4H, m), 2.53 (2H, t), 7.27—7.63
D			(84.80	6.51	8.96)		(10H, m), 8.70 (1H, s)
6 a	86, hexane	$C_0H_{10}N_2O$	99.99	6.22	17.27	2240	2.50 (3H, s), 2.60 (3H, s), 3.63 (1H, t), 4.57 (2H, d),
			(66.43	6.11	17.10)		8.22 (1H, s)
9	140 - 143/2	C,1H,4N,0	69.44	7.42	14.73	2250	1.30 (6H, t), 2.83 (2H, q), 3.00 (2H, q), 4.07 (1H, brs),
}		1 11	(69.46	7.44	14.73)		4.67 (2H, br s), 8.45 (1H, s)
3	150 - 155/2	C,1H,8N,0	71.52	8.31	12.83	2250	1.28 (6H, d), 1.32 (6H, d), 3.08 (1H, m), 3.43 (1H, brs),
}		7 01 61	(71.22	8.43	12.71)		3.53 (1H, m), 4.63 (2H, s), 8.42 (1H, s)
3	154—156/2	C, H, N, O	73.13	9.00	11.37	2230	0.97 (12H, d), 2.06 (2H, m), 2.63 (2H, d), 2.83 (2H, d),
ŝ		- 13 - 77 - 7	(73.05	9.04	11.34)		2.50—3.00 (1H, br s), 4.60 (2H, br s), 8.42 (1H, s)
3	118—119.	C,0H,1N,0	79.70	4.93	9.78	2240	2.47—2.87 (1H, br s), 4.38 (2H, s), 7.20—7.57 (6H, m),
3	cyclohexane	* **	(79.64	4.88	9.76)		7.77—8.10 (4H, m), 8.90 (1H, s)
Qŧ	127 - 129.	$C_{10}H_{14}N_{2}O$	79.70	4.93	9.78	2240	4.13 (1H, brs), 4.60 (2H, brs), 7.69 (6H, m), 8.30
;	МеОН		(79.40	4.97	9.63)		(4H, m), 9.12 (1H, s)
9	72—74,	$C_{19}H_{14}N_2O$	79.70	4.93	9.78	2245	2.20 (1H, brs), 4.54 (2H, s), 7.20—7.57 (10H, m),
0 ,	MeOH-H ₂ O	·	(79.68	5.04	9.53)		8.74 (1H, s)

TABLE VII. Properties of Alkynylpyrazine N-Oxides

Compound	bp (°C/Torr) or mp (°C, recryst.	Formula	An	Analysis (%) Calcd (Found)	(pu	$IR (C \equiv C) cm^{-1}$	¹ H-NMR (δ, ppm)
	from)		C	Н	Z	(ileat of NDI)	
7a	139—140,	$C_{14}H_{12}N_2O$	74.99	5.38	12.49	2220	2.50 (3H, s), 2.68 (3H, s), 7.33—7.83 (5H, m),
	iso-Pr,O		(75.21	5.45	12.49)		8.12 (1H, s)
7 b	90-92, hexane	$C_{16}H_{16}N_2O$	76.16	6:36	11.10	2230	1.35 (6H, t), 2.78 (2H, q), 3.23 (2H, q), 7.40—7.92
			(76.28	6:39	11.11)		(5H, m), 8.17 (1H, s)
7c	97—99,	$C_{18}H_{20}N_2O$	77.11	7.19	66.6	2220	1.40 (6H, d), 1.60 (6H, d), 3.10 (1H, m), 4.27 (1H, m),
	MeOH-H,0	i i	(77.36	7.19	10.26)		7.67—8.23 (5H, m), 8.42 (1H, s)
7d	125.5 - 126.5	$C_{20}H_{24}N_2O$	77.88	7.84	80.6	2230	0.93 (6H, d), 1.03 (6H, d), 2.23 (2H, m), 2.57 (2H, d),
	hexane	1	(77.89	7.92	8.86)		3.05 (2H, d), 7.33—7.93 (5H, m), 8.05 (1H, s)
7e	207—208 (dec.),	$C_{24}H_{16}N_2O$	82.74	4.63	8.04	2240	7.37 (5H, s), 7.50—7.72 (6H, m), 7.72—7.93 (2H, m),
	МеОН		(82.83	4.61	8.06)		8.00—8.23 (2H, m), 8.70 (1H, s)
78	180—182,	$C_{24}H_{16}N_2O$	82.74	4.63	8.04	2240	7.10—7.53 (13H, m), 7.53—7.77 (2H, m), 8.40 (1H, s)
)	MeOH		(82.55	4.61	7.86)		
83	76.5, iso-Pr ₂ O	$C_{12}H_{16}N_2O$	70.56	7.90	13.72	2250	0.97 (3H, t), 1.62 (4H, m), 2.47 (3H, s), 2.53 (2H, t),
			(70.81	7.89	13.63)		2.60 (3H, s), 8.08 (1H, s)
8	130—135/1	$C_{14}H_{20}N_2O$	72.38	89.8	12.06	2250	0.95 (3H, t), 1.25 (3H, t), 1.28 (3H, t), 1.58 (4H, m),
			(72.08	89.8	11.96)		2.53 (2H, t), 2.75 (2H, q), 3.12 (2H, q), 8.12 (1H, s)

ౙ	115—117/0.1	$C_{16}H_{24}N_2O$	73.80	9.29	10.76	2245	0.97 (3H, t), 1.28 (6H, d), 1.47 (6H, d), 1.60 (4H, m),
	-		(73.72)	9.13	10.48)		2.53 (2H, t), 2.98 (1H, m), 4.02 (1H, m), 7.98 (1H, s)
2	70—72.	C,8H,8N,0	74.95	9.79	9.71	2240	0.80—1.20 (3H, m), 0.92 (6H, d), 0.98 (6H, d), 1.62
;	MeOH-H,O		(75.23	9.20	9.75)		(4H, m), 2.20 (2H, m), 2.48 (2H, t), 2.52 (2H, d),
	7						2.97 (2H, d), 7.95 (1H, s)
æ	118 - 120,	$C_{2}, H_{20}N, O$	80.46	6.14	8.53	2250	0.82 (3H, t), 1.32 (4H, m), 2.32 (2H, t), 7.45—7.82
	iso-Pr,O		(80.31	6.03	8.55)		(8H, m), 7.95—8.15 (2H, m), 8.68 (1H, s)
8	75—76, hexane	$C_{\gamma\gamma}H_{\gamma0}N_{\gamma}O$	80.46	6.14	8.53	2240	0.94 (3H, t), 1.59 (4H, m), 2.49 (2H, t), 7.11—7.48
)		; ;	(80.32	6.21	8.46)		(10H, m), 8.31 (1H, s)
9a	180—181,	$C_9H_{10}N_2O_2$	99.09	99.5	15.72	2230	2.45 (3H, s), 2.55 (3H, s), 3.22 (1H, brs), 4.53 (2H, d),
	AcOEt		(60.46	5.63	15.60)		8.07 (1H, s)
8	83—85,	$C_{11}H_{14}N_2O_2$	64.06	6.84	13.58	2250	1.23 (3H, t), 1.28 (3H, t), 2.73 (2H, q), 3.08 (2H, q),
	cyclohexane		(64.16	6.65	13.32)		4.60 (2H, s), 7.57 (1H, br s), 8.08 (1H, s)
૪	56—57, hexane	$C_{13}H_{18}N_2O_2$	66.64	7.74	11.96	2245	1.28 (6H, d), 1.45 (6H, d), 2.93 (1H, m), 3.47 (1H, brs),
			(66.46	7.69	11.83)		3.92 (1H, m), 4.60 (2H, s), 7.98 (1H, s)
8	105 - 106	C ₁ ,H,,N,O,	68.67	8.45	10.68	2250	0.95 (6H, d), 1.02 (6H, d), 1.97 (1H, brs), 2.18 (2H, m),
	iso-Pr,O		(68.40	8.49	10.45)		2.60 (2H, d), 3.00 (2H, d), 4.60 (2H, d), 8.00 (1H, s)
8	129,	$C_{19}H_{14}N_2O_2$	75.48	4.67	9.27	2230	3.67 (1H, brs), 4.47 (2H, s), 7.30 (5H, s), 7.38 (5H, s),
,	hexane-AcOEt		(75.23)	4.68	9.19)		8.40 (1H, s)
16	130—131,	$C_{20}H_{24}N_2O$	77.88	7.84	80.6	2250	0.93 (6H, d), 1.02 (6H, d), 2.22 (2H, m), 2.57 (2H, d),
	hexane		(77.76	7.76	8.98)		3.03 (2H, d), 7.20—7.67 (5H, m), 7.88 (1H, s)

razines/	
f Dialkynylpy	
Properties of	
TABLE VIII.	

		A STATE OF THE STA				And the second of the second o	
Compound	bp (°C/Torr) or mp (°C, recryst.	Formula	An	Analysis (%) Calcd (Found)	(pu	IR $(C \equiv C) \text{ cm}^{-1}$	1 H-NMR (δ , ppm)
	from)		၁	Н	z	(mat of Mbi)	
10a	174—175,	$\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_2$	85.69	5.23	60.6	2230	2.73 (6H, s), 7.30—7.83 (10H, m)
	hexane		(85.60	5.17	8.95)		
10b	177—178,	$\mathrm{C_{24}H_{20}N_2}$	85.68	5.99	8.33	2220	1.42 (6H, t), 3.17 (4H, q), 7.40—8.00 (10H, m)
	cyclohexane		(85.41	9.00	8.20)		
10c	219—222,	$\mathrm{C_{26}H_{24}N_{2}}$	85.68	6.64	7.69	2230	1.53 (12H, d), 3.90 (2H, m), 7.13—8.03 (10H, m)
	Me_2CO		(85.59	6.75	7.88)		
10d	150—153,	$\mathrm{C}_{28}\mathrm{H}_{28}\mathrm{N}_2$	85.67	7.19	7.14	2220	1.00 (12H, d), 2.30 (2H, m), 2.93 (4H, d), 7.33—7.83
	cyclohexane		(85.69	7.36	7.37)		(10H, m)
10e	253—255,	$\mathrm{C}_{32}\mathrm{H}_{20}\mathrm{N}_2$	88.86	4.66	6.48	2240	7.33—7.77 (16H, m), 8.07—8.37 (4H, m)
	CHCl ₃ -MeOH	-	(88.67	4.64	6.42)		
10f	197 - 198,	$C_{32}H_{20}N_2$	88.86	4.66	6.48	2230	7.33—8.00 (16H, m), 8.25—8.67 (4H, m)
	MeCN		(89.15	4.62	(09.9		
10g	192—194,	$\mathrm{C}_{32}\mathrm{H}_{20}\mathrm{N}_2$	88.86	4.66	6.48	2225	7.27—8.17 (20H, m)
	MeCN		(88.68	4.62	6.54)		
11a	51—52, MeOH	$\mathrm{C_{18}H_{24}N_{2}}$	80.55	9.01	10.44	2230	0.92 (6H, t), 1.57 (8H, m), 2.47 (4H, t), 2.53 (6H, s)
			(80.46	9.05	10.33)		
11b	150—155/1	$\mathrm{C_{20}H_{28}N_{2}}$	81.03	9.52	9.45	2250	0.93 (6H, t), 1.10 (6H, t), 1.57 (8H, m), 2.47 (4H, t),
			(80.80	9.56	9.33)		2.90 (4H, q)
11c	59—61,	$\mathrm{C}_{22}\mathrm{H}_{32}\mathrm{N}_2$	81.43	9.94	8.63	2250	0.93 (6H, t), 1.27 (12H, d), 1.57 (8H, m), 2.48 (4H, t),
	$MeOH-H_2O$		(81.17	9.84	8.68)		3.52 (2H, m)

11d	56.5—57.5,	$C_{24}H_{36}N_2$	81.76	10.29	7.95	2245	0.96 (12H, d), 0.98 (6H, t), 1.60 (8H, m), 2.22 (2H, m),
	$MeOH-H_2O$		(81.71	10.33	(7.97)		2.52 (4H, t), 2.82 (4H, d)
11e	105—107,	$\mathrm{C_{28}H_{28}N_2}$	85.67	7.19	7.14	2250	0.87 (6H, t), 1.47 (8H, m), 2.40 (4H, t), 7.40—7.67
	hexane		(85.73	7.07	7.23)		(6H, m), 8.00—8.33 (4H, m)
11f	55.5,	$C_{28}H_{28}N_2$	85.67	7.19	7.14	2250	0.90 (6H, t), 1.53 (8H, m), 2.44 (4H, t), 7.40—7.63
	MeOH-H ₂ O		(85.42	7.14	7.00)		(6H, m), 8.07—8.38 (4H, m)
11g	80.5—81.5,	$C_{28}H_{28}N_2$	85.67	7.19	7.14	2250	0.97 (6H, t), 1.66 (8H, m), 2.57 (4H, t), 7.20—7.60
	hexane		(85.69	7.16	7.02)		(10H, m)
12a	254—256 (dec.),	$C_{12}H_{12}N_2O_2$	66.65	5.59	12.96	2245	2.00 (6H, s), 4.13 (4H, d), 5.27 (2H, t)
	AcOEt		(66.59	5.64	12.76)		
12b	151—153,	$C_{14}H_{16}N_2O_2$	68.83	09.9	11.47	2245	1.13 (6H, t), 2.70 (4H, t), 4.17 (4H, d), 5.30 (2H, t)
	iso-Pr ₂ O		(68.61	6.50	11.19)		
12c	199—201,	$\mathrm{C_{16}H_{20}N_2O_2}$	70.56	7.40	10.29	2245	1.13 (12H, d), 3.27 (2H, m), 4.20 (4H, d), 5.30 (2H, t)
	iso-Pr ₂ O		(70.54	7.40	10.21)		
12d	156—158,	$C_{18}H_{24}N_2O_2$	71.97	8.05	9.33	2250	0.83 (12H, d), 1.97 (2H, m), 2.58 (4H, d), 4.17 (4H, d),
	iso-Pr ₂ O		(72.24)	8.29	9.14)		5.30 (2H, t)
12e′	155—157,	$C_{19}H_{13}CIN_2O$	71.14	4.09	8.73	2250	2.37 (1H, brs), 4.47 (2H, s), 7.47—7.73 (6H, m),
	cyclohexane		(71.43	4.00	8.77)		7.73—8.07 (2H, m), 8.07—8.30 (2H, m)
12e	221—222,	$C_{22}H_{16}N_2O_2$	77.63	4.74	8.23	2250	4.13 (4H, d), 5.30 (2H, t), 7.17—7.50 (6H, m),
	cyclohexane		(77.38	4.65	8.14)		7.67—7.97 (4H, m)
12f ′	142—143,	$C_{19}H_{13}CIN_2O$	71.14	4.09	8.73	2250	2.33 (1H, br s), 4.47 (2H, s), 7.33—7.73 (6H, m),
	cyclohexane		(71.16	4.14	8.71)		7.83—8.33 (4H, m)
12f	210—211,	$\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_2\mathrm{O}_2$	77.63	4.74	8.23	2245	4.13 (4H, d), 5.27 (2H, t), 7.10—7.43 (6H, m),
	CHCl ₃		(77.36	4.74	8.18)		7.67—8.00 (4H, m)
12g′	118—120,	$C_{19}H_{13}CIN_2O$	71.14	4.09	8.73	2240	2.83 (1H, br s), 4.57 (2H, d), 7.20—7.67 (10H, m)
	hexane		(70.92	4.02	8.66)		

- d) Reduction of 3,6-Dimethyl-2-phenylethynylpyrazine (4a) with Lithium Aluminum Hydride——A mixture of 4a (280 mg, 1 mmol) and LiAlH₄ (74 mg, 2 mmol) in THF (5 ml) was refluxed for 4h. The reaction mixture was usually worked up to yield a red-brown oil, which was chromatographed on silica gel (15 g) using hexane containing increasing amounts of AcOEt. The fractions eluted with a mixture of hexane and AcOEt (4:1) gave 13 (35 mg, 8%) and 14 (60 mg, 14%), successively.
- (E)-3,6-Dimethyl-2-styrylpyrazine (14): Colorless oil, bp 117—122 °C/3 Torr. High-resolution MS: Calcd for $C_{14}H_{14}N_2$: 210.1156. Obsd: 210.1148. MS m/e: 210 (M⁺). ¹H-NMR δ : 2.54 (3H, s, CH₃), 2.26 (3H, s, CH₃), 7.20 (1H, d, J=16 Hz, CH=CH), 7.30—7.48 (3H, m, benzene H), 7.48—7.65 (2H, m, benzene H), 7.82 (1H, d, J=16 Hz, CH=CH), 8.16 (1H, s, pyrazine H).
- e) Reaction of 2,5-Dichloro-3,6-diisobutylpyrazine (3d) with Equimolar Phenylacetylene——A mixture of 3d (540 mg, 2 mmol), phenylacetylene (196 mg, 2 mmol), CH₃COOK (294 mg, 3 mmol), and Pd(PPh₃)₄ (232 mg, 0.2 mmol) in DMF (10 ml) was heated at 100 °C for 2 h. The reaction mixture was worked up as described in the general procedure a). The resulting solid was chromatographed on silica gel (20 g), and elution with a mixture of hexane and AcOEt (50:1) gave the starting material (235 mg, 43%), 2-chloro-3,6-diisobutyl-5-phenylethynylpyrazine (17) (245 mg, 31%) and 2,5-bis(phenylethynyl)-3,6-diisobutylpyrazine (10d) (138 mg, 18%), successively.
- 2-Chloro-3,6-diisobutyl-5-phenylethynylpyrazine (17): Colorless needles (from MeOH–H₂O), mp 68 °C. *Anal.* Calcd for C₂₀H₂₃ClN₂: C, 73.48; H, 7.09; N, 8.57. Found: C, 73.21; H, 6.98; N, 8.51. 1 H-NMR δ : 0.98 (6H, d, J = 7 Hz, CH₂CH(CH₃)₂), 1.02 (6H, d, J = 7 Hz, CH₂CH(CH₃)₂), 2.33 (2H, m, J = 7 Hz, CH₂CH(CH₃)₂), 2.85 (2H, d, J = 7 Hz, CH₂CH(CH₃)₂), 2.93 (2H, d, J = 7 Hz, CH₂CH(CH₃)₂), 7.40—8.27 (5H, m, benzene H). IR (KBr) cm⁻¹: 2230 (C \equiv C).
- f) Reaction of 3,6-Dialkyl-2,5-dichloropyrazines and Dichlorodiphenylpyrazines with 2.4 Equimolar Acetylenic Compounds—A mixture of a substrate (1 mmol), an acetylenic compound (2.4 mmol), CH₃COOK (235 mg, 2.4 mmol), and the catalyst, Pd(PPh₃)₄ (116 mg, 0.1 mmol) or Pd(PPh₃)₂Cl₂ (14 mg, 0.02 mmol)—CuI (20 mg, 0.1 mmol), in DMF (5 ml) was heated at 100 °C for 2 h and worked up as described under general procedure a).

References

- 1) K. Sonogashira, Y. Toda, and N. Hagihara, Tetrahedron Lett., 1975, 4467.
- 2) K. Edo, T. Sakamoto, and H. Yamanaka, Chem. Pharm. Bull., 26, 3843 (1978).
- 3) A. Ohsawa, Y. Abe, and H. Igeta, Chem. Pharm. Bull., 28, 3488 (1980).
- 4) T. Sakamoto, M. Shiraiwa, Y. Kondo, and H. Yamanaka, Synthesis, 1983, 312.
- 5) Y. Akita, M. Shimazaki, and A. Ohta, Synthesis, 1981, 974.
- 6) G. W. K. Cavill and E. Houghton, Aust. J. Chem., 27, 879 (1974).
- 7) R. A. Baxter and F. S. Spring, J. Chem. Soc., 1947, 1179.
- 8) Y. Akita and A. Ohta, Heterocycles, 19, 329 (1982).
- 9) A. Ohta, A. Inoue, K. Ohtsuka, and T. Watanabe, Heterocycles, 23, 133 (1985).
- 10) A. Ohta, Y. Akita, and Y. Nakane, Chem. Pharm. Bull., 27, 2980 (1979).
- 11) A. Ohta, Chem. Pharm. Bull., 16, 1160 (1968).
- 12) E. F. Jenny and J. Druey, Helv. Chim. Acta, 38, 401 (1959).
- 13) A. Ohta, S. Masano, S. Iwakura, A. Tamura, H. Watahiki, M. Tsutsui, Y. Akita, and T. Watanabe, J. Heterocycl. Chem., 19, 465 (1982).
- 14) A. Ohta, T. Ohwada, C. Ueno, M. Sumita, S. Masano, Y. Akita, and T. Watanabe, *Chem. Pharm. Bull.*, 27, 1378 (1979).
- 15) A. Ohta, A. Imazeki, Y. Itoigawa, H. Yamada, C. Suga, C. Takagai, H. Sano, and T. Watanabe, *J. Heterocycl. Chem.*, 20, 311 (1983).
- 16) J. Adachi and N. Sato, J. Org. Chem., 37, 221 (1972).
- 17) H. Gainer, M. Kokorudz, and W. K. Langdon, J. Org. Chem., 26, 2360 (1961).
- 18) A. Ohta, S. Masano, M. Tsutsui, E. Yamamoto, S. Suzuki, H. Makita, H. Tamamura, and Y. Akita, J. Heterocycl. Chem., 18, 555 (1981).
- 19) P. J. Lont and H. C. van der Plas, Recl. Trav. Chim., 92, 449 (1973).
- 20) G. Karmas and P. E. Spoerri, J. Am. Chem. Soc., 74, 1580 (1952).
- 21) R. A. Baxter, G. T. Newbold, and F. S. Spring, J. Chem. Soc., 1948, 1859.
- 22) A. Ohta, Y. Akita, and M. Hara, Chem. Pharm. Bull., 27, 2027 (1979).
- 23) A. Ohta and M. Ohta, Synthesis, 1985, 216.
- 24) D. E. Ames and M. I. Brohi, J. Chem. Soc., Perkin Trans. 1, 1980, 1384.