Chem. Pharm. Bull. 34(4)1493—1496(1986)

A Novel Synthesis of 1-Acylindoxyls

Chun-Sheng Chien, Atsushi Hasegawa, Tomomi Kawasaki, and Masanori Sakamoto*

Meiji College of Pharmacy, 1–35–23, Nozawa, Setagaya-ku, Tokyo 154, Japan

(Received August 30, 1985)

A novel and efficient synthesis of 1-acylindoxyls (3) from 1-acylindoles (1) is described. The procedure involves the demethoxylation with stannic chroride of 1-acyl-3-hydroxy-2-methoxy-indoline (2), which were obtained by the MoO₅ oxidation of 1 in methanol. Since the MoO₅ oxidation of 2-substituted 1-acylindoles (1f and 1g) gave not the corresponding indolines (2f and 2g), but 2-hydroxyindoxyls (4f and 4g), 2f and 2g were obtained by the methylation of 4f and 4g with diazomethane to give 5f and 5g, followed by the reduction of 5f and 5g with sodium borohydride, respectively.

Keywords—indoxyl; indole; indoline; oxidation; demethoxylation; peroxomolybdenum complex; methylation; diazomethane; reduction; sodium borohydride

1-Acylindoxyls are useful intermediates for the syntheses of biologically active compounds¹⁾ and are prepared mainly by the cyclization of 2-carboxyphenylglycines²⁾ and 2-(acylamino)- α -chloroacetophenones.³⁾ However, little is known about the preparation of 1-acylindoxyls from 1-acylindoles. The only known examples are the oxidation of 1,3-diacylindole with lead tetraacetate⁴⁾ and the electrochemical acetoxylation of 1-acetylindole followed by elimination and hydrolysis of the acetoxylation product.⁵⁾ The former gives a low yield of 1-acetylindoxyl, and the latter gives a considerable yield of 1-acetylindoxyl, but the application of the method to other indoles has not been investigated at all. In our recent studies on the MoO₅ oxidation,⁶⁻⁹⁾ we reported an example of the preparation of 1-acetylindoxyl (3a) from 1-acetylindole (1a),⁶⁾ i.e., the MoO₅ oxidation of 1a in methanol to

1494 Vol. 34 (1986)

give 1-acetyl-3-hydroxy-2-methoxyindoline (2a), followed by the demethoxylation of 2a. We have now examined the generality and limitations of this preparation method. However, the MoO_5 oxidation of 2-substituted 1-acylindoles (1) in methanol did not give the expected 3-hydroxy-2-methoxyindolines (2) but 1-acyl-2-hydroxyindoxyls (4), and therefore we investigated the reductive dehydroxylation of 4 to 2-substituted indoxyls (3). The present paper describes these conversions for the preparation of 1-acylindoxyls (3b—g) from 1-acylindoles (1b—g).

Initially, we examined the application of the previously described method to several 1-acylindoles (1b-e) other than 1a; 1-acetyl-5-methoxy- (1b), 1-acetyl-5-bromo- (1c), 1-benzoyl-(1d), and 1-methoxycarbonylindoles (1e) were treated with the peroxomolybdenum reagent, (hexamethylphosphoramido)oxodiperoxomolybdenum (VI) ($MoO_5 \cdot HMPA$), in methanol to give the corresponding indolines (2b-e). Reaction of 2b-e with stannic chloride gave 1-acylindoxyls (3b-e), and the overall yields of 3b-e from 1b-e were 65–84%. The structures were confirmed by the spectral data (see Experimental). In the case of 1-acetyl-5-nitroindole, the MoO_5 oxidation did not occur at all. A serious limitation of this method is that the MoO_5 oxidation of 1-acetyl-2-methylindole (1f) in methanol did not give 1-acetyl-3-hydroxy-2-methylindoline (2f), but 1-acetyl-2-hydroxy-2-methylindoxyl (4f).

Next, we attempted the conversion of 4f to 1-acetyl-2-methylindoxyl (3f). Treatment of 4f with sodium borohydride gave a complex mixture. Compound 4f is probably in equilibrium with its acyclic tautomer 4f',¹⁰⁾ and this may account for its failure to undergo the desired reduction. This failure indicated the need for protection of the hydroxy group of 4f. Therefore, 1-acetyl-2-methoxy-2-methylindoxyl (5f) was prepared in 95% yield by treatment of 4f with an excess of diazomethane in the presence of zinc chloride. As expected, reduction of 5f with sodium borohydride gave a 90% yield of 3-hydroxy-2-methoxyindoline (2f), and subsequent demethoxylation with stannic chloride gave the desired indoxyl (3f) in 76% yield. The overall yield of 3f from 1f was 41%. The structures of these compounds (5f, 2f, and 3f) were determined from the spectral data (see Experimental).

In a similar manner, 1-acetyl-5-methoxy-2-methylindoxyl (3g), which is an intermediate for the synthesis of indomethacin, ^{1a)} was prepared in 56% overall yield from the indole (1g); the structures of 4g, 5g, 2g, and 3g were assigned on the basis of the spectral data (see Experimental).

Although several methods for the preparation of 2-unsubstituted 1-acylindoxyls (3) are known, $^{2-5}$) there is no efficient method for the preparation of 2-substituted indoxyl (3). This new method offers a simple and efficient route to either 2-unsubstituted or 2-substituted 1-acylindoxyls (3).

Experimental

All melting points are uncorrected. Infrared (IR) spectra were recorded on a Hitachi 260-10 or 270-30 spectrophotometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were measured with a JEOL JNM-PMX 60 instrument using tetramethylsilane as an internal standard. Column chromatography was carried out on silica gel (80—100 mesh, Kanto Chemical Co., Inc.).

Materials—MoO₅·HMPA was prepared by the method of Mimoun and co-workers.¹¹⁾ 1-Acetyl-5-methoxy-(1b), 1-acetyl-5-bromo- (1c), and 1-acetyl-5-methoxy-2-methylindoles (1g) were prepared by acetylation of commercial indoles according to the procedure of Illi.¹²⁾ 1-Benzoyl- (2d) and 1-methoxycarbonyl-3-hydroxy-2-methoxyindolines (2e), and 1-acetyl-2-hydroxy-2-methylindoxyl (4f) were prepared by the previously described procedure.⁶⁾

1-Acetyl-3-hydroxy-2,5-dimethoxyindoline (2b)—A solution of 1b (1.20 g, 6.3 mmol) and MoO₅ HMPA (2.49 g, 7.0 mmol) in dry CH₃OH (70 ml) was stirred at room temperature under argon for a week. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel with CHCl₃ as an eluent to give *trans*-2b (0.79 g, 52%) and *cis*-2b (0.37 g, 25%). The stereochemistry was confirmed by comparison of the ¹H-NMR spectral data with those for *trans*- and *cis*-2a.⁶⁾

trans-2b: mp 148—149 °C (from ether). Anal. Calcd for C₁₂H₁₅NO₄: C, 60.76; H, 6.37; N, 5.90. Found: C, 60.80;

H, 6.50; N, 5.90. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3412 (OH), 1665 (C=O). ¹H-NMR (CDCl₃) δ : 1.95 (3H, s, -COCH₃), 3.33 (3H, s, -OCH₃); 3.2—3.45 (1H, br, OH, exchangeable with D₂O), 3.77 (3H, s, -OCH₃), 4.85 (1H, s, -CH-), 5.13 (1H, s, -CH-), 6.85—7.15 (2H, m, Ar-H), 7.97 (1H, d, J=8 Hz, Ar-H).

cis-**2b**: mp 158—160 °C (from ether). *Anal.* Calcd for $C_{12}H_{15}NO_4$: C, 60.76; H, 6.37; N, 5.90. Found: C, 60.75; H, 6.37, N, 5.90. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 3568 (OH), 1662 (C = O). 1 H-NMR (CDCl₃) δ : 2.18 (3H, s, -COCH₃), 2.3—2.65 (1H, br s, OH), 3.40 (3H, s, -OCH₃), 3.63 (3H, s, -OCH₃), 4.9—5.35 (2H, br s, -CH-CH-), 6.5—7.0 (2H, m, Ar-H), 7.55—8.2 (1H, br, Ar-H).

1-Acetyl-5-bromo-3-hydroxy-2-methoxyindoline (2c)—Using a procedure similar to that described above for the preparation of 2b, 1c (3.0 g, 12.6 mmol) was treated with MoO₅ HMPA (7.15 g, 20.1 mmol) in dry CH₃OH (200 ml). The reaction mixture was purified by column chromatography on silica gel with CH₂Cl₂-ethyl acetate (50:3) as an eluent to give *trans*-2c (1.95 g, 54%) and *cis*-2c (0.97 g, 27%). The stereochemistry was confirmed by comparison of the ¹H-NMR spectral data with that of *trans*- and *cis*-2a.⁶

trans-2c: mp 213—214 °C (from ether). Anal. Calcd for C₁₁H₁₂BrNO₃: C, 46.18; H, 4.23; N, 4.90. Found: C, 46.30; H, 4.22; N, 4.93. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3400 (OH), 1671 (C=O). ¹H-NMR (CDCl₃) δ: 2.03 (3H, s, -COCH₃), 3.33 (3H, s, -OCH₃), 3.2—3.5 (1H, br, OH), 4.87 (1H, s, -CH-), 5.13 (1H, s, -CH-), 7.25—7.6 (2H, m, Ar-H), 7.88 (1H, d, J=8 Hz, Ar-H).

*cis-***2c**: mp 220—221 °C (from ether). *Anal*. Calcd for C₁₁H₁₂BrNO₃: C, 46.18; H, 4.23; N, 4.90. Found: C, 46.31; H, 4.21; N, 4.95. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 3598 (OH), 1689 (C = O). 1 H-NMR (CDCl₃) δ: 2.23 (3H, s, -COCH₃), 2.0—2.75 (1H, br, OH), 3.45 (3H, s, -OCH₃), 4.8—5.5 (2H, br s, -CH-CH-), 6.5—7.1 (2H, m, Ar-H), 7.6—8.1 (1H, br, Ar-H).

General Procedure for Demethoxylation of 2b—e to 1-Acylindoxyls (3b—e)—The following procedure is typical. A solution of $SnCl_4$ (1.3 mmol) in dry CH_2Cl_2 (3—5 ml) was added to a solution of 2b—e (1 mmol) in dry CH_2Cl_2 (4—5 ml) at 0 °C. The reaction mixture was allowed to warm to room temperature, then stirred for 30 min, diluted with CH_2Cl_2 (10 ml), and washed with saturated NaCl solution. The CH_2Cl_2 layer was dried over Na_2SO_4 , and concentrated *in vacuo* to give a solid, which was recrystallized from C_6H_6 (for 3b, c) or ether (for 3d, e) to give 3b—e.

1-Acetyl-5-methoxyindoxyl (3b) — This was prepared from *trans-2b* (200 mg, 0.84 mmol) and SnCl₄ (290 mg, 1.1 mmol) in 94% yield (163 mg), mp 183—185 °C [lit.³⁾ mp 184—187 °C]. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1718, 1676 (C=O). ¹H-NMR (CDCl₃) δ : 2.28 (3H, s, -COCH₃), 3.82 (3H, s, -OCH₃), 4.27 (2H, s, -CH₂CO-), 7.0—7.4 (2H, m, Ar-H), 8.42 (1H, d, J=8 Hz, Ar-H).

1-Acetyl-5-bromoindoxyl (3c)—This was prepared from *trans-*2c (285 mg, 1 mmol) and SnCl₄ (340 mg, 1.3 mmol) in 94% yield (238 mg), mp 196—198 °C [lit.¹³⁾ mp 187—188 °C]. *Anal.* Calcd for $C_{10}H_8BrNO_2$: C, 47.27; H, 3.17; N, 5.51. Found: C, 47.27; H, 3.09; N, 5.56. IR $v_{max}^{CHCl_3}$ cm⁻¹: 1731, 1689 (C=O). ¹H-NMR (CDCl₃) δ : 2.18 (3H, s, -COCH₃), 4.28 (2H, s, -CH₂CO-), 7.45—7.8 (2H, m, Ar-H), 8.32 (1H, d, J=9 Hz, Ar-H).

1-Benzoylindoxyl (3d) — This was prepared from *trans*-2d (245 mg, 1 mmol) and SnCl₄ (340 mg, 1.3 mmol) in 88% yield (188 mg), mp 124—125 °C. *Anal.* Calcd for C₁₅H₁₁NO₂: C, 75.93; H, 4.67; N, 5.90. Found: C, 75.70; H, 4.43; N, 5.74. IR $\nu_{\text{max}}^{\text{ChCl}_3}$ cm⁻¹: 1720, 1660 (C=O). ¹H-NMR (CDCl₃) δ : 4.28 (2H, s, -CH₂CO-), 7.2—7.9 (8H, m, Ar-H), 8.21 (1H, d, J=8 Hz, Ar-H).

1-Methoxycarbonylindoxyl (3e)——This was prepared from *trans*-**3e** (0.67 g, 3 mmol) and SnCl₄ (1.05 g, 4 mmol) in 96% yield (0.55 g), mp 268—269 °C. *Anal.* Calcd for $C_{10}H_9NO_3$: C, 62.82; H, 4.67; N, 7.33. Found: C, 63.06; H, 4.81; N, 7.23. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1705 (C=O). ¹H-NMR (CDCl₃) δ : 3.90 (3H, s, -OCH₃), 4.18 (2H, s, -CH₂CO-), 6.95—7.8 (3H, m, Ar-H), 8.10 (1H, d, J=8 Hz, Ar-H).

1-Acetyl-2-hydroxy-5-methoxy-2-methylindoxyl (4g)—Using a procedure similar to that described above for the preparation of 2b, 1g (0.87 g, 4.3 mmol) was treated with MoO_5 · HMPA (1.77 g, 5 mmol). The reaction mixture was chromatographed on a silica gel column. Elution with CH_2Cl_2 —ethyl acetate (25:2) gave 1-acetyl-5-methoxy-2-methylindoxyl (3g) in 11% yield (0.11 g). Further elution with CH_2Cl_2 —ethyl acetate (5:1) gave 4g in 74% yield (0.75 g).

3g: mp 124—126 °C (from ether–n-hexane) [lit. 1a mp 125 °C]. IR $v_{max}^{CHCl_3}$ cm $^{-1}$: 1715, 1665 (C=O). 1 H-NMR (CDCl₃) δ : 1.58 (3H, d, J=7 Hz, –CH–C \underline{H}_3), 2.35 (3H, s, –COCH₃), 3.82 (3H, s, –OCH₃), 4.27 (1H, q, J=7 Hz, –C \underline{H} –CH₃), 7.2—7.3 (2H, m, Ar-H), 8.2—8.7 (1H, br, Ar-H).

4g: mp 182—185 °C (from C_6H_6). Anal. Calcd for $C_{12}H_{13}NO_4$: C, 61.27; H, 5.57; N, 5.96. Found: C, 61.39; H, 5.63; N, 5.97. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3300 (OH), 1725, 1650 (C=O): ¹H-NMR (CDCl₃-DMSO- d_6) δ : 1.67 (3H, s, -CH₃), 2.48 (3H, s, -COCH₃), 3.80 (3H, s, -OCH₃), 5.6—6.15 (1H, br, OH, exchangeable with D₂O), 7.0—7.5 (2H, m, Ar-H), 8.40 (1H, d, J=9 Hz, Ar-H).

1-Acetyl-2-methoxy-2-methylindoxyl (5f)—A solution of ZnCl₂ (0.99 g, 7.2 mmol) in dry ether (10 ml) was gradually added to a solution of 4f (0.50 g, 2.4 mmol) and diazomethane¹⁴⁾ (ca. 22 mmol) in dry ether (270 ml) at 0—5 °C. The reaction mixture was stirred at room temperature overnight. After removal of a precipitate, the filtrate was concentrated in vacuo to give a solid, which was recrystallized from n-hexane to give 5f (0.507 g, 95%), mp 165—166 °C. Anal. Calcd for $C_{12}H_{13}NO_3$: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.81; H, 6.07; N, 6.31. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1725, 1670 (C=O). ¹H-NMR (CDCl₃) δ : 1.70 (3H, s, -CH₃), 2.47 (3H, s, -COCH₃), 3.11 (3H, s, -OCH₃), 7.2—7.85 (3H, m, Ar-H), 8.60 (1H, d, J=8 Hz, Ar-H).

1-Acetyl-2,5-dimethoxy-2-methylindoxyl (5g)—Using a procedure similar to that described above for the preparation of 5f, 4g (0.52 g, 2.2 mmol) was treated with diazomethane¹⁴⁾ (*ca.* 40 mmol) and ZnCl₂ (0.9 g, 6.6 mmol) in dry ether (60 ml) and tetrahydrofuran (100 ml). The reaction mixture was purified by column chromatography on silica gel with CH₂Cl₂ to give 5g (0.42 g, 76%), mp 126—127 °C (from ether–*n*-hexane). *Anal.* Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.57; H, 6.13; N, 5.54. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1732, 1668 (C=O). ¹H-NMR (CDCl₃) δ: 1.68 (3H, s, -CH₃), 2.45 (3H, s, -COCH₃), 3.12 (3H, s, -OCH₃), 3.83 (3H, s, -OCH₃), 7.0—7.4 (2H, m, Ar-H), 8.52 (1H, d, J=8 Hz, Ar-H).

1-Acetyl-3-hydroxy-2-methoxy-2-methylindoline (2f)—Sodium borohydride (74 mg, 1.9 mmol) was gradually added to a solution of 5f (111 mg, 0.5 mmol) in CH₃OH (3 ml) and H₂O (0.2 ml) at 0—5 °C. The reaction mixture was allowed to warm to room temperature, then stirred for 10 min, diluted with CHCl₃ (70 ml), and washed with H₂O. The CHCl₃ layer was dried over MgSO₄, and concentrated *in vacuo* to give 2f^{1.5}) (101 mg, 90%). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3530 (OH), 1660 (C=O). ¹H-NMR (CDCl₃) δ : 1.83 (3H, s, -CH₃), 2.42 (3H, s, -COCH₃), 3.33 (3H, s, -OCH₃), 3.0—3.5 (1H, br, OH), 4.83 (1H, s, -CH-), 7.0—7.5 (3H, m, Ar-H), 7.84 (1H, d, J=8 Hz, Ar-H).

1-Acetyl-3-hydroxy-2,5-dimethoxy-2-methylindoline (2g)—Using a procedure similar to that described above for the preparation of 2f, 5g (0.24 g, 0.96 mmol) was treated with sodium borohydride (0.18 g, 4.8 mmol) in CH₃OH (65 ml) and H₂O (1.5 ml) to give 2g¹⁵⁾ (0.24 g, quantitative yield). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3552 (OH), 1660 (C=O). ¹H-NMR (CDCl₃) δ: 1.83 (3H, s, -CH₃), 2.38 (3H, s, -COCH₃), 2.55—2.9 (1H, br, OH), 3.32 (3H, s, -OCH₃), 3.77 (3H, s, -OCH₃), 4.85 (1H, s, -CH-), 6.65—7.05 (2H, m, Ar-H), 7.5—7.95 (1H, br, Ar-H).

1-Acetyl-2-methylindoxyl (3f)—Using a procedure similar to that described above for the preparation of 3b, 2f (58 mg, 0.26 mmol) was treated with SnCl₄ (89 mg, 0.34 mmol) in dry CH₂Cl₂ (2 ml) to give a crude product, which was purified by column chromatography on silica gel with CH₂Cl₂ as an eluent to give 3f (38 mg, 77%), mp 101—103.5 °C (from C₆H₆) [lit.^{1a)} mp 104 °C]. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1720, 1675 (C=O). ¹H-NMR (CDCl₃) δ : 1.60 (3H, d, J= 7 Hz, -CH-CH₃), 2.40 (3H, s, -COCH₃), 4.30 (1H, q, J= 7 Hz, -CH-CH₃), 7.1—7.85 (3H, m, Ar-H), 8.32 (1H, d, J= 8 Hz, Ar-H).

1-Acetyl-5-methoxy-2-methylindoxyl (3g)—Using a procedure similar to that described above for the preparation of 3b, 2g (0.24 g, 0.96 mmol) was treated with $SnCl_4$ (0.27 g, 1.05 mmol) in dry CH_2Cl_2 (10 ml) to give a crude product, which was purified by column chromatography on silica gel with CH_2Cl_2 -ethyl acetate (30:1) as an eluent to give 3g (0.16 g, 77%), mp 126—127.5 °C (from ether) [lit. 1a) mp 125 °C].

Acknowledgement The authors wish to thank Miss A. Koike in the Analysis Center of our college for elemental analysis.

References and Notes

- 1) a) Indomethacin: J. Y. Merour, J. Y. Coadou, and F. Tatibouët, *Synthesis*, 1982, 1053; b) Triptamines: A. Buzas and C. Herisson, *Synthesis*, 1977, 129; c) Ellipticine analogue: F. Nivoliers, A. Decormeille, A. Godard, and G. Quéguiner, *Tetrahedron Lett.*, 1980, 4485.
- 2) R. J. Sundberg, "The Chemistry of Indoles," Academic Press, New York and London, 1970, p. 367.
- 3) T. Sugasawa, M. Adachi, K. Sasakura, and A. Kitagawa, J. Org. Chem., 44, 578 (1979).
- 4) T. Hino, Y. Torisawa, and M. Nakagawa, Chem. Pharm. Bull., 30, 2349 (1982).
- 5) S. Torii, T. Yamanaka, and H. Tanaka, J. Org. Chem., 43, 2882 (1978).
- 6) C.-S. Chien, T. Suzuki, T. Kawasaki, and M. Sakamoto, Chem. Pharm. Bull., 32, 3945 (1984).
- 7) C.-S. Chien, T. Takanami, T. Kawasaki, and M. Sakamoto, Chem. Pharm. Bull., 33, 1843 (1985).
- 8) C.-S. Chien, T. Kawasaki, M. Sakamoto, Y. Tamura, and Y. Kita, Chem. Pharm. Bull., 33, 2743 (1985).
- 9) C.-S. Chien, T. Kawasaki, and M. Sakamoto, Chem. Pharm. Bull., 33, 5071 (1985).
- It is known that 2-hydroxyindolines are in equilibrium with these acyclic tautomers; O. Buchardt and C. Lohse, Tetrahedron Lett., 1966, 4355.
- 11) H. Mimoun, I. S. deRoche, and L. Sajus, Bull. Soc. Chim. Fr., 1969, 1481.
- 12) V. O. Illi, Synthesis, 1979, 387.
- 13) S. J. Holt and V. Petrow, J. Chem. Soc., 1947, 607.
- 14) F. Arndt, "Organic Syntheses," Coll. Vol. II, ed. by A. H. Blatt, John Wiley and Sons, Inc., New York, 1943, p.
- 15) Compounds 2f and 2g were unstable to heat so that they were used in the next reaction without further purification; when 2g was kept in CDCl₃ at room temperature for 15 h, it was converted to the indoxyl 3g (checked by thin layer chromatography and continuous observation of changes in the ¹H-NMR spectra).