Communications to the Editor

Chem. Pharm. Bull. 34(4)1846—1849(1986)

FIVE NEW DIARYLHEPTANOIDS FROM THE MALE FLOWERS OF ALNUS SIEBOLDIANA

Toshihiro Hashimoto, Motoo Tori, and Yoshinori Asakawa*
Faculty of Pharmaceutical Sciences, Tokushima Bunri University,
Tokushima 770, Japan

Five new diarylheptanoids, yashabushidiol A and B, yashabushiketodiol A and B, and yashabushitriol, have been isolated from the male flowers of <u>Alnus sieboldiana MATSUM</u>. and their absolute structures determined by spectral methods and chemical transformations to known yashabushiketol and dihydroyashabushiketol.

KEYWORDS—Alnus sieboldiana; yashabushidiol A; yashabushidiol B; yashabushiketodiol A; yashabushiketodiol B; yashabushitriol; structure elucidation; diarylheptanoid

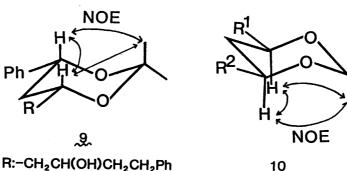
The isolation of diarylheptanoids, stilbenes, flavonoids, and triterpenes from the male flowers of <u>Alnus sieboldiana MATSUM</u>. (Betulaceae) has been recorded. $^{1-6}$) We are interested in the characteristic aroma and the viscous nature of this plant. In a continuation of the chemical study of this family of plants, we have isolated five new diarylheptanoids (1-5) from the male flowers of <u>A. sieboldiana</u>, which were collected in Tokushima prefecture just before the flowering season. This paper describes the structures of 1-5.

The fresh male flowers of \underline{A} . $\underline{sieboldiana}$ (9.2 kg) were homogenized with hexane and the hexane extract was subjected to silica-gel column chromatography to give $\underline{1}$ (257 mg), $\underline{2}$ (309 mg), $\underline{3}$ (4.4 g), $\underline{4}$ (143 mg), and $\underline{5}$ (252 mg).

Yashabushidiol A (1) [mp 80-81°C, [α]_D= \pm 0° (CHCl₃)] and yashabushidiol B (2) [mp 92-93°C, [α]_D= \pm 7.2° (CHCl₃)] showed the molecular formula, C₁₉H₂₄O₂ [m/z 285.1855 (M+1)⁺ for 1, m/z 285.1844 (M+1)⁺ for 2], by chemical ionization high resolution mass spectrometry (CI-HRMS).⁷) The ¹H NMR and ¹³C NMR spectra⁸) of 1 and 2 revealed two oxygen-bearing methine groups [1: δ _H 3.84 (H-3 and H-5), δ _C 72.3 (C-3 and C-5); 2: δ _H 3.97 (H-3 and H-5), δ _C 68.9 (C-3 and C-5)]. These data are very similar to those of dihydroyashabushiketol ($\frac{6}{2}$)³, $\frac{5}{2}$) and indicate that both 1 and 2 are 1,7-diphenylheptane-3,5-diols. In order to determine the stereochemistries, $\frac{6}{2}$ was reduced with NaBH₄ to give 1 and $\frac{7}{2}$ 9) after chromatographic separation. As the specific rotation of 1 is [α]_D= \pm 0°, 1 must be a meso compound and therefore 7 [mp 91-92°C, [α]_D=-7.3° (CHCl₃)] should have the

Table. 13C NMR Data of Compounds $\underline{1}-\underline{6}$ and $\underline{9}-\underline{10}$

No.	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	9	10
1	31.6	32.2	69.8	70.2	74.6	29.5	71.5	70.9
2	39.7	39.1	51.9	52.2	45.2	45.0	39.3	37.6 ⁺
3	72.3	68.9	211.0	211.4	69.6	210.8	68.0 [*]	67.6*
4	42.8	42.5	50.2	50.3	43.1	49.3	42.1	44.0
5	72.3	68.9	66.8	67.0	68.1	66.8	67 . 3*	66.8*
6	39.7	39.1	38.0	38.2	39.1	38.1	38.8	36.5 ⁺
7	31.6	32.2	31.6	31.7	32.0	31.7	32.1	30.9
1'	141.8	141.9	142.8	142.8	144.3	140.6	142.1	144.5
1''	141.8	141.9	141.6	141.7	142.0	141.8	142.1	141.8


^{*,+} Assignments may be interchanged in each vertical column.

structure shown, $^{10)}$ because the absolute stereochemistry of $\underline{6}$ has been established to be $\underline{s}.^{3,5)}$. The spectral data of $\underline{2}$ were in fair agreement with those of $\underline{7}$ except for the sign of the rotation. Thus, $\underline{1}$ is $\underline{\text{meso}}-1,7$ -diphenylheptane-3,5-diol and $\underline{2}$ was established to be 1,7-diphenylheptane- $(3\underline{R}),(5\underline{R})$ -diol.

The molecular formula of both yashabushiketodiol A (3) [mp 62-63°C, [α]_D=+57.5°(CHCl3) and +21.4°(MeOH)] and yashabushiketodiol B (4) [mp 60-61°C, [α]_D=-28.6°(CHCl3) and -16.3°(MeOH)] was determined by CI-HRMS to be C₁₉H₂₂O₃ [m/z 299.1592 (M+1)+ for 3 and m/z 299.1660 (M+1)+ for 4]. The IR spectra of 3 and 4 indicated the presence of hydroxyl (3520 and 3380 cm⁻¹) and carbonyl (1695 cm⁻¹) groups. The 1 H and 13 C NMR spectra of 3 and 4 showed two oxygen-bearing methine groups [3: δ_H 4.05 (m, H-5) and 5.12 (dd, J=9.5 and 3.2 Hz, H-1), δ_C 66.8 (d, C-5) and 69.8 (d, C-1); 4: δ_H 4.05 (m, H-5) and 5.15 (dd, J=9.5 and 3.2 Hz, H-1), δ_C 67.0 (d, C-5) and 70.2 (d, C-1)]. Comparison of the 13 C NMR spectra of 3 and 4 with that of dihydroyashabushiketol (6) (Table) suggests that the diols are the C-1 epimers of 1,7-diphenylheptan-3-one-1,5(S)-diol. This is confirmed by the formation of yashabushiketol acetate (8) ([α]_D=+15.2°(CHCl3))^{3,5}) upon acetylation (Ac20/Py/rt) of either 3 or 4. Hydrogenolysis (H₂/Pd-C) of both 3 and 4 afforded dihydroyashabushiketol (6) ([α]_D=+16.1° from 3 and +15.1° from 4). The stereochemistries of the C-1 of 3 and 4 were established as follows.

Reduction of $\underline{3}$ with NaBH $_4$ gave a mixture of two triols, which was further treated with 2,2-dimethoxypropane in the presence of p-TsOH affording two acetonides, $\underline{9}$ and $\underline{10}$, after chromatographic separation. As it is expected that only two acetonides, in which the large substituents occupy the equatorial positions, will be formed as illustrated in the Fig., $\underline{9}$ and $\underline{10}$ are inferred to have the structures as shown. When the proton at C-1 (δ_{H} 4.92) of $\underline{9}$ was irradiated, H-3 (δ_{H} 4.36) and the methyl group (δ_{H} 1.57) showed a large NOE. Similar NOE's were detected between H-3, H-5, and the axial methyl group of $\underline{10}$. The final evidence was obtained by hydrogenolysis ($\mathrm{H_2/Pd-C}$) of $\underline{9}$ and $\underline{10}$ in AcOH giving $\underline{7}$ and $\underline{1}$, respectively. Thus, the stereochemistries of C-1 of $\underline{3}$ and $\underline{4}$ were unambiguously established to be \underline{R} and \underline{S} , respectively.

The 1 H and 13 C NMR spectra of yashabushitriol ($\underline{5}$) (mp 89-90°C, [α]_D=+30.3° (CHCl₃), C₁₉H₂₄O₃, m/z 300.1728 (M)⁺ by HRMS) showed three oxygen-bearing methine

10 R¹:-CH₂CH(OH)Ph R²:-CH₂CH₂Ph

Fig.

groups [δ_H 4.92 (dd, J=10.3 and 2.4 Hz, H-1), 4.30 (m, H-3), and 3.96 (m, H-5); δ_C 74.6 (C-1), 69.6 (C-3), and 68.1 (C-5)]. The acetonide $\underline{9}$ obtained from $\underline{3}$ (vide supra) afforded $\underline{5}$ [mp 88.5-90°C, [α]_D=+29.5°(CHCl₃)] on treatment with 60% AcOH. From these results the structure of $\underline{5}$ was determined to be 1,7-diphenylheptane-(1 \underline{R}),(3 \underline{R}),(5 \underline{S})-triol.

ACKNOWLEDGEMENT This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare.

REFERENCES AND NOTES

- 1) Y. Asakawa, F. Genjida, and T. Suga, Bull. Chem. Soc. Jpn., 44, 297 (1971).
- 2) Y. Asakawa, Bull. Chem. Soc. Jpn., 44, 2761 (1971).
- 3) Y. Asakawa, Bull. Chem. Soc. Jpn., 45, 1794 (1972).
- 4) T. Suga, T. Aoki, T. Hirata, K. Aoki, and Y. Asakawa, Bull. Chem. Soc. Jpn., 52, 1698 (1979).
- 5) T. Suga, S. Ohta, T. Aoki, and T. Hirata, Bull. Chem. Soc. Jpn., <u>56</u>, 3353 (1983).
- 6) T. Suga, S. Ohta, T. Aoki, and T. Hirata, Chem. Lett., 1985, 1331.
- 7) High resolution mass spectra were measured on a JEOL JMS HX-100 spectrometer.
- 8) NMR spectra were taken on a JEOL JNM GX-400 spectrometer.
- 9) N. I. Urarova, G. I. Oshitok, A. K. Drizenko, G. B. Elyakov, Khim. Priod. Soedinenii, 1970, 463.
- 10) Although the isolation of compound $\frac{7}{2}$ ([α]_D=-10° (CHCl₃) has been reported, 9) the stereochemistry was not determined.

(Received February 20, 1986)