1924 Vol. 34 (1986)

Chem. Pharm. Bull. 34(5)1924—1928(1986)

Studies on Tetrahydroisoquinolines. XXVII.¹⁾ A Synthesis of 3-Hydroxyaporphines and 3-Hydroxyhomoaporphines²⁾

HIROSHI HARA, HIROSHI SHINOKI, TOSHIYA KOMATSU, OSAMU HOSHINO, and BUNSUKE UMEZAWA*

Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162, Japan

(Received September 17, 1985)

Acid treatment of o-quinol acetates (2a and 2b) derived from 5-hydroxy-1-benzyltetrahy-droisoquinolines (3a and 3b) gave the corresponding 3-hydroxyaporphines (4a and 4b) in high yield. Similarly, the 3-hydroxyhomoaporphines (4c, 4d, and 4e) were exclusively synthesized from the corresponding I-phenethyl o-quinol acetates (2c, 2d, and 2e). On the other hand, no C-noraporphine was formed from the 1-aryl o-quinol acetate (2f); instead, the p-quinone (11) was generated.

Keywords—o-quinol acetate; lead tetraacetate oxidation; 3-hydroxyaporphine; 3-hydroxyaporphine; cyclization

As an extension of our program directed towards the elucidation of the reactivity of oand p-quinol acetates derived from guiacol-type 1,2,3,4-tetrahydroisoquinolines, we have
recently carried out the lead tetraacetate (LTA) oxidation of 1,2,3,4-tetrahydro-6-methoxy-2methylisoquinolin-5-ol to obtain the expected o-quinol acetate (1) and have confirmed that
the 8-position of 1 can be attacked by acetic acid intermolecularly.³⁾ The present report deals
with the successful cyclization of the o-quinol acetates (2) to 2,3-dioxygenated aporphines and
homoaporphines as an application of the similar cyclization of p-quinol acetates.⁴⁾

The 1-benzyl-6-methoxytetrahydroisoquinolin-5-ols (3a and 3b) were prepared by the usual procedure⁵⁾ starting from 2-benzyloxy-3-methoxy- β -phenethylamine and the corresponding phenylacetic acids [i) Bischler-Napieralski reaction, ii) NaBH₄ reduction, iii) N-methylation, and iv) debenzylation]. Similarly, the 1-phenethyl analogs (3c, 3d, and 3e) were derived from the same phenethylamine as above and the corresponding dihydrocinnamic acids.

Oxidation of the phenolic amine (3a) with LTA in CH_2Cl_2 gave the o-quinol acetate (2a) as a mixture of diastereomers⁶⁾; the structure was consistent with the spectral data [infrared (IR) cm⁻¹: 1730 (OAc), 1670 (dienone); proton nuclear magnetic resonance (¹H-NMR) δ : 2.04 (OAc), 3.32 and 3.35 (3H, a pair of s, aliph. OMe)⁶⁾]. The o-quinol acetate (2a) was treated with CF_3CO_2H in CH_2Cl_2 to give the 3-hydroxyaporphine (4a), mp 213—214 °C (lit.⁷⁾ 214—215 °C), in 73% yield. The ¹H-NMR spectrum of 4a showed three aromatic protons (δ 6.82, 7.07, 7.16) each as a singlet, demonstrating the formation of the aporphine ring.

Similarly, oxidation of the 1-piperonyltetrahydroisoquinolin-5-ol (3b) and subsequent acid treatment afforded 3-hydroxy-2-methoxy-9,10-methylenedioxyaporphine (4b), mp 206 °C, in 87% yield. Moreover, the 1-homoveratryltetrahydroisoquinolin-5-ol (3c) was oxidized to give the o-quinol acetate (2c), which was treated with CF₃CO₂H, affording 3-hydroxy-2,10,11-trimethoxyhomoaporphine (4c), mp 199—200 °C, in 91% yield. 3-Hydroxy-2-methoxy-10,11-methylenedioxy- (4d) and 3-hydroxy-2,10,11,12-tetramethoxy- (4e) homoaporphines were similarly synthesized from the corresponding 1-phenethyltetrahydro-

No. 5

isoquinolin-5-ols (3d and 3e), in 87% and 90% yields, respectively.

In a previous total synthesis of (\pm) -kreysigine (5) via the appropriate p-quinol acetate (6), we have observed that (\pm) -O-methylandrocymbine (7) and the homoproaporphine (8) are also formed as by-products. Therefore, formation of such by-products was also expected in the present case. However, the o-quinol acetates (2c—e) gave solely the homoaporphines (4c—e). Presumably, steric and/or electrostatic repulsion between the carbonyl group and the activated benzene ring prevented the cyclization of the o-quinol acetate (2e) to the homomorphinandienone (9).

In order to construct the C-noraporphine skeleton (4f), we applied the above methodology to 1-aryltetrahydroisoquinolin-5-ol (3f). Namely, LTA oxidation of 3f, which was prepared by the usual procedure,⁵⁾ gave the o-quinol acetate (2f). Acid treatment of 2f furnished the p-quinone (11) as an isolable product, unexpectedly. The structure of 11 was determined from the spectroscopic data [IR cm⁻¹: 1645, 1600 (quinone); ¹H-NMR δ : 5.65 (olefinic H)] and the reduction below. Reduction of the p-quinone (11) with zinc in Ac₂O gave the diacetate (12), the ¹H-NMR spectrum of which showed a signal due to one of the acetoxyl groups at δ 1.88. The upfield-shifted acetoxyl group could readily be assigned to C-8. The absence of C-noraporphine (4f) formation was perhaps ascribable to its highly strained structure, and the p-quinone (11) was generated through the intermediacy of the tri-

fluoroacetate (13),⁹⁾ which was successively hydrolyzed to afford 5,8-dihydroxy-6-methoxy-2-methyl-1-(3,4-dimethoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (14). The hydroquinone (14) was so sensitive to air oxidation that the p-quinone was gradually formed in the course of work-up.¹⁰⁾ Actually, the crude product obtained by the above CF₃CO₂H treatment of 2f was also a mixture of two compounds (11 and 14). To establish the structures, the mixture wa acety-lated to give rise to a stable but intractable mixture, which consisted to two compounds, 11 and 12.¹¹⁾ The precursor of the diacetate (12) is almost certainly the unstable hydroquinone (14).

Thus, the o-quinol acetates (2) proved to be key compounds for the preparation of 3-hydroxyaporphines and 3-hydroxyhomoaporphines.

Experimental

All melting points were measured on a Büchi melting point apparatus and are uncorrected. ¹H-NMR spectra were taken with a JEOL JNM-FX-100 (100 MHz) or Hitachi R-24B instrument in CDCl₃ solution with Me₄Si as an internal standard, and IR spectra were run on a Hitachi model 260 spectrometer in CHCl₃ solution, unless otherwise noted. High-resolution mass spectral data were measured with a Hitachi RMU-6E mass spectrometer. Preparative thin-layer chromatography (TLC) was performed on precoated Silica gel 60 F₂₅₄ plates (Merck), 2.0 mm thick.

General Procedure for the Preparation of 1,2,3,4-Tetrahydroisoquinolin-5-ols (3a, 3b, and 3f)—A mixture of 2-benzyloxy-3-methoxyphenethylamine and homoveratric acid or homopiperonylic acid was heated at 160 °C (bath temperature) for 5h to give an amide (16a or 16b). Schotten-Baumann reaction of the same amine and 3,4-dimethoxybenzoyl chloride afforded an amide (16f). Bischler-Napieralski reaction of 16a, 16b, and 16f yielded the hydrochlorides of the 3,4-dihydroisoquinolines (17a, 17b, and 17f), respectively. Sodium borohydride reduction of 17a·HCl, 17b·HCl, or 17f in MeOH gave the corresponding tetrahydroisoquinoline (18a, 18b, or 18f). Reaction of the amine (18a, 18b, or 18f) with 37% formalin in MeOH and subsequent reduction with sodium borohydride

afforded the corresponding N-methylamine (19a, 19b, or 19f). Hydrogenolysis of the bases with palladium on carbon gave 3a, 3b, and 3f, respectively. Yields and physical data are as follows. 16a: 65%, mp 73—74°C (n-hexane); Anal. Calcd for C₂₆H₂₉NO₅: C, 71.70; H, 6.71; N, 3.22. Found: C, 71.57; H, 6.66; N, 3.20. IR cm⁻¹: 1645 (CONH-). ¹H-NMR δ : 3.35 (2H, s, COCH₂Ar), 3.80, 3.85, 3.87 (each 3H, s, OMe), 4.92 (2H, s, OCH₂Ph). 16b: 49%, mp 83.5— 84°C (n-hexane); Anal. Calcd for C₂₅H₂₅NO₅: C, 71.58; H, 6.01; N, 3.34. Found: C, 71.51; H, 6.02; N, 3.45. ¹H-NMR δ : 3.20 (2H, s, COCH₂Ar), 3.79 (3H, s, OMe), 4.85 (2H, s, OCH₂Ph), 5.76 (2H, s, OCH₂O). 16f: 81%, mp 113-114°C (PhH-CHCl₃); Anal. Calcd for C₂₅H₂₇NO₅: C, 71.24; H, 6.46; N, 3.32. Found: C, 71.40; H, 6.23; N, 3.29. 18a: 83% (from 16a), an oil. ¹H-NMR δ : 3.84 (3H, s, OMe), 3.86 (6H, s, 2 × OMe), 4.96 (2H, s, OCH₂Ph). 18b: 96% (from **16b)**, an oil. ¹H-NMR δ : 3.78 (3H, s, OMe), 4.88 (2H, s, OCH₂Ph), 5.80 (2H, s, OCH₂O). Oxalate: mp 200—201 °C (MeOH); Anal. Calcd for C₂₇H₂₇NO₈: C, 65.71; H, 5.52; N, 2.84. Found: C, 65.67; H, 5.52; N, 2.76. 19a: 91%, an oil. ¹H-NMR δ : 2.47 (3H, s, NMe), 3.76, 3.83, 3.89 (each 3H, s, OMe), 4.96 (2H, s, OCH₂Ph). 19b: 97%, an oil. ¹H-NMR δ : 2.35 (3H, s, NMe), 3.70 (3H, s, OMe), 4.87 (2H, s, OCH₂Ph), 5.69 (2H, s, OCH₂O). Methiodide: mp 120 °C (H₂O); Anal. Calcd for C₂₇H₃₀INO₄·H₂O: C, 56.36; H, 5.61; N, 2.09. Found: C, 56.48; H, 5.49; N, 2.41. 3a: 97%, mp 121— 122 °C (acetone-MeOH); Anal. Calcd for C₂₀H₂₅NO₄: C, 69.95; H, 7.34; N, 4.08. Found: C, 69.79; H, 7.34; N, 4.12. IR cm⁻¹: 3525 (OH). ¹H-NMR δ : 2.50 (3H, s, NMe), 3.77, 3.83, 3.85 (each 3H, s, OMe). 3b: 92%, an oil. ¹H-NMR δ : 2.40 (3H, s, NMe), 3.73 (3H, s, OMe), 5.74 (2H, s, OCH₂O). Methiodide: mp 224—225 °C (iso-PrOH); Anal. Calcd for C₂₀H₂₄INO₄: C, 51.18; H, 5.15; N, 2.98. Found: C, 50.99; H, 5.34; N, 2.79. 3f: 85% (from 16f), mp 164—165°C (acetone-ether); Anal. Calcd for C₁₉H₂₃NO₄: C, 69.28; H, 7.04; N, 4.25. Found: C, 68.92; H, 7.04; N, 4.23. ¹H-NMR (CD₃OD) δ : 2.20 (3H, s, NMe), 3.73, 3.78, 3.84 (each 3H, s, OMe), 4.16 (1H, s, 1-H).

General Procedure for the Preparation of 1-Phenethyl-1,2,3,4-tetrahydroisoquinolin-5-ols (3c, 3d, and 3e)mixture of 2-benzyloxy-3-methoxyphenethylamine and the appropriate dihydrocinnamic acid was heated at 160 °C (bath temperature) for 5 h to give the amide (16c, 16d, or 16e). Bischler-Napieralski reaction of 16c, 16d, or 16e in CH₂Cl₂ afforded the 3,4-dihydroisoquinoline (17c, 17d, or 17e), which was reacted with CH₃I and reduced with sodium borohydride, giving the N-methylamine (19c, 19d, or 19e). Hydrolysis of the base by refluxing with 20% HCl in benzene gave 3c, 3d, or 3e, respectively. Yields and physical data are as follows. 16c: 84%, mp 82—83 °C (AcOEtn-hexane); Anal. Calcd for C₂₇H₃₁NO₅: C, 72.14; H, 6.95; N, 3.12. Found: C, 72.29; H, 7.07; N, 3.12. IR cm⁻¹: 1660 (CONH-). ¹H-NMR δ : 3.86, 3.88, 3.92 (each 3H, s, OMe), 5.04 (2H, s, OCH₂Ph). **16d**: 85%, mp 90—91 °C (EtOHiso-PrOH); Anal. Calcd for C₂₆H₂₇NO₅: C, 72.04; H, 6.28; N, 3.23. Found: C, 72.29; H, 6.37; N, 3.16. IR cm⁻¹: 1665 (CONH-). ¹H-NMR δ: 3.93 (3H, s, OMe), 5.03 (2H, s, OCH₂Ph), 5.93 (2H, s, OCH₂O). 16e: 70%, an oil. IR cm⁻¹: 1650 (CONH-). 15e methiodide: mp 164-165 °C (acetone-ether); Anal. Calcd for C₂₉H₃₄INO₅: C, 57.72; H, 5.68; N, 2.32. Found: C, 57.73; H, 5.65; N, 2.11. 19c: 92% (from 16c), an oil. H-NMR δ : 2.45 (3H, s, NMe), 3.88, 3.90, 3.92 (each 3H, s, OMe), 5.05 (2H, s, OCH₂Ph). 19d: 81% (from 16d), an oil. ¹H-NMR δ : 2.43 (3H, s, NMe), 3.90 (3H, s, OMe), 5.04 (2H, s, OCH₂Ph), 5.92 (2H; s, OCH₂O). 3c: 50%, an amorphous mass. IR cm⁻¹: 3540 (OH). ¹H-NMR δ : 2.46 (3H, s, NMe), 3.84 (3H, s, OMe), 3.86 (6H, s, 2 × OMe). Methiodide: mp 100—102 °C (MeOH-AcOEt); Anal. Calcd for C₂,H₃₀INO₄·0.5H₂O: C, 52.00; H, 6.15; N, 2.75. Found: C, 52.06; H, 6.25; N, 2.57. 3d: 54%, an oil. IR cm⁻¹: 3550 (OH). ¹H-NMR δ : 2.49 (3H, s, NMe),3.90 (3H, s, OMe), 5.92 (2H, s, OCH₂O). Methiodide: mp 108— 110 °C (MeOH-AcOEt); Anal. Calcd for C₂₁H₂₆INO₄·H₂O: C, 50.31; H, 5.84; N, 2.80. Found: C, 50.47; H, 5.64; N, 2.55. 3e: 60% (from 16e), an oil. IR cm⁻¹: 3525 (OH). ¹H-NMR δ : 2.46 (3H, s, NMe), 3.80, 3.84 (each 3H, s, OMe), 3.82 (6H, s, $2 \times OMe$), 6.36 (2H, s, 2'- and 6'-H), 6.54, 6.68 (each 1H, d, J=8 Hz, 7- and 8-H).

General Procedure for Preparation of the 3-Hydroxyaporphines and Homoaporphines (4a, 4b, 4c, 4d, and 4e)-LTA (1.2 eq) was added to an ice-cooled solution of a phenolic base (3a, 3b, 3c, 3d, or 3e) (100 mg) in CH₂Cl₂ (5 ml), and the mixture was stirred at the same temperature for 1 min. The resulting precipitate was removed by filtration and the filtrate was washed with sat. NaHCO₃ aq. solution. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layer was washed with brine. The extract was dried over K₂CO₃, and the solvent was removed under reduced pressure below 30 °C to give the o-quinol acetate (2a, 2b, 2c, 2d, or 2e, respectively). Without purification, each o-quinol acetate was dissolved in CH₂Cl₂ (10 ml), and CF₃CO₂H (1 ml) was added to the solution. The mixture was stirred at room temperature for 2 h. Usual work-up gave a crude product, which was purified by recrystallization or preparative TLC [developing solvent: CHCl₃-MeOH (100:15)]. Yields and physical data are as follows. 2a: an oil. IR cm⁻¹: 1730 (OAc), 1670 (dienone). ¹H-NMR δ : 2.04 (3H, s, OAc), 2.41 (3H, s, NMe), 3.32, 3.35 (3H, each s, aliph. OMe), 3.77 (6H, s, 2 × arom. OMe), 5.68, 5.77 (1H, each s, olef. H), 5.85 (1H, s, olef. H), 6.60 (3H, s, arom. H). 2c: an oil. IR cm⁻¹: 1730 (OAc), 1675 (dienone). ¹H-NMR δ : 2.05 (3H, s, OAc), 2.38 (3H, s, NMe), 3.38 (3H, s, aliph. OMe), 3.76 (6H, s, arom. H), 5.90 (2H, s, olef. H). 2d: an oil. IR cm⁻¹: 1735 (OAc), 1675 (dienone). ¹H-NMR δ : 2.01 (3H, s, OAc), 2.32 (3H, s, NMe), 3.34 (3H, s, aliph. OMe), 5.70 (2H, s, OCH₂O), 5.90 (2H, s, olef. H). 4a: 73% (from 3a), mp 213—214 °C (n-hexane—CHCl₃) (lit. 7) 214—215 °C). 1 H-NMR δ : 2.55 (3H, s, NMe), 3.84, 3.89, 3.92 (each 3H, s, OMe), 6.82, 7.07, 7.16 (each 1H, s, arom. H). 4b: 87% (from 3b), mp 206 °C (ether); Anal. Calcd for C₁₀H₁₀NO₄: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.21; H, 5.87; N, 4.30. ¹H-NMR δ : 2.52 (3H, s, NMe), 3.94 (3H, s, OMe), 5.92 (2H, br s, OCH₂O), 6.70, 6.92, 7.08 (each 1H, s, arom. H). 4c: 91% (from 3c), mp 199—200 °C (MeOH-AcOEt); Anal. Calcd for C₂₁H₂₅NO₄·0.5H₂O: C, 69.20; H, 7.19; N, 3.84. Found: C, 69.24; H, 7.32; N, 3.72. ¹H-NMR δ : 2.42 (3H, s, NMe), 3.91 (6H, s, 2 × OMe), 3.93 (3H, s, OMe), 6.72, 6.74, 6.81 (each 1H, s, arom. H). 4d: 87% (from 3d), mp 188—190°C (MeOH). High-resolution mass spectrum (MS): Calcd for C₂₀H₂₁NO₄ (339.1468). Found: 339.1447 (M⁺). ¹H-NMR δ : 2.44 (3H, s, NMe), 3.95 (3H, s, OMe), 6.00 (2H, s, OCH₂O), 6.75, 6.77, 6.86 (each 1H, s, arom. H). 4e: 90% (from 3e), mp 240—245 °C; MS m/z: 385 (M⁺). ¹H-NMR (CF₃CO₂D) δ : 3.92, 4.09 (each 3H, s, OMe), 4.03 (6H, s, 2 × OMe), 6.85, 7.13 (each 1H, s, arom. H). Acetate: an oil. High-resolution MS: Calcd for C₂₄H₂₉NO₆ (427.1992). Found: 427.1971 (M⁺). IR cm⁻¹: 1750 (OAc). ¹H-NMR δ : 2.36, 2.40 (each 3H, s, OAc and NMe), 3.53, 3.82, 3.91, 3.92 (each 3H, s, OMe), 6.55, 6.98 (each 1H, s, arom. H). Methiodide of the acetate: mp 204—205 °C (MeOH–ether); *Anal*. Calcd for C₂₅H₃₂INO₆·0.5C₄H₁₀O: C, 53.55; H, 6.16; N, 2.31. Found: C, 53.35; H, 6.04; N, 2.15.

Oxidation of 3f and Subsequent Acid Treatment—LTA (1.2 eq) was added to an ice-cooled solution of 3f (120 mg) in CH_2Cl_2 (10 ml) in one portion, and the whole was stirred at the same temperature for 1 min. The same work-up gave the o-quinol acetate (2f) [IR cm⁻¹: 1735 (OAc), 1670 (dienone); ¹H-NMR δ : 2.00, 2.05 (3H, a pair of s, OAc), 2.16, 2.20 (3H, a pair of s, NMe), 3.37, 3.42 (3H, a pair of s, aliph. OMe), 5.80 (2H, br s, olef. H)] as an oil. Without purification, 2f was dissolved in CH_2Cl_2 (15 ml), and CF_3CO_2H (0.7 ml) was added to the solution. The mixture was stirred at room temperature for 2 h. Usual work-up and purification by preparative TLC [developing solvent: $CHCl_3$ -MeOH (15:1)] afforded the p-quinone (11) (82 mg, 66%) as unstable reddish brown crystals. High-resolution MS: Calcd for $C_{19}H_{21}NO_5$ (343.14196). Found: 343.14437 (M⁺). IR cm⁻¹: 1645, 1600 (quinone). ¹H-NMR δ : 2.25 (NMe), 3.74, 3.80, 3.84 (each 3H, s, OMe), 4.48 (1H, s, 1-H), 5.65 (1H, s, 7-H), 6.65 (3H, br s, arom. H).

Reduction of 11 by Zinc in Acetic Anhydride³⁾—Zinc powder (350 mg) was added to a solution of 11 (82 mg) in Ac₂O (6 ml), and the mixture was stirred at room temperature for 12 h. The reaction mixture was filtered, and water (10 ml) was added to the filtrate. The whole was stirred for 1 h and then basified with sat. NaHCO₃ aq. solution. The product was extracted with CHCl₃ and work-up as usual gave an oily product, which was purified by preparative TLC [developing solvent: CHCl₃-MeOH (15:1)] to give the diacetate (12) (52 mg, 50%), an oil. IR cm⁻¹: 1755 (OAc). ¹H-NMR δ : 1.88 (3H, s, 8-OAc), 2.34, 2.36 (each 3H, s, 5-OAc and NMe), 3.76, 3.80, 3.84 (each 3H, s, OMe), 4.54 (1H, s, 1-H), 6.50, 6.58 (each 1H, s, 7-H and 2'-H), 6.54, 6.72 (each 1H, d, J=8 Hz, 5'- and 6'-H). Methiodide: mp 238—240 °C (MeOH-ether); *Anal*. Calcd for C₂₄H₃₀INO₇: C, 50.45; H, 5.29; N, 2.45. Found: C, 50.17; H, 5.10; N, 2.32.

Acknowledgements The authors gratefully acknowledge the financial support of this work by a Grant-in-Aid for Scientific Research (No. 58570890) from the Ministry of Education, Science and Culture, Japan. They are indebted to Dr. T. Moroe of Takasago Perfumery Co., Ltd. for providing the starting vanillin. Thanks are also due to Mr. Y. Hanagata, Miss M. Akasaka, Miss E. Haraguchi, and the late Mr. S. Hamada for their technical assistance, to Sankyo Co., Ltd. for elemental analyses, and to Miss N. Sawabe of this Faculty for NMR spectral measurements.

References and Notes

- 1) Part XXVI: H. Hara, A. Tsunashima, H. Shinoki, T. Akiba, O. Hoshino, and B. Umezawa, *Chem. Pharm. Bull.*, 34, 66 (1986).
- 2) Preliminary report: see H. Hara, H. Shinoki, O. Hoshino, and B. Umezawa, Heterocycles, 20, 2155 (1983).
- 3) H. Hara, H. Shinoki, O. Hoshino, and B. Umezawa, Heterocycles, 20, 2149 (1983).
- 4) H. Hara, O. Hoshino, and B. Umezawa, Chem. Pharm. Bull., 24, 262 (1976).
- 5) H. Hara, R. Shirai, O. Hoshino, B. Umezawa, and Y. Iitaka, Chem. Pharm. Bull., 31, 4236 (1983).
- 6) The ratio of two products was approximately 1:1 as estimated from the integral values of ¹H-NMR signals.
- 7) S. M. Kupchan and C. K. Kim, J. Org. Chem., 41, 3210 (1976).
- 8) H. Hara, O. Hoshino, B. Umezawa, and Y. Iitaka, J. Chem. Soc., Perkin Trans. 1, 1979, 2657.
- 9) The structure of 13 was assumed by analogy with the reaction described below. Treatment with AcOH $(2.5 \text{ ml})^{3)}$ of 2f derived from 3f (100 mg) at room temperature overnight, followed by purification of the products over silica gel column [eluent: CHCl₃-MeOH (50:1)] gave 8-acetoxy-5-hydroxy-6-methoxy-2-methyl-1-(3,4-1) dimethoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (15), mp 141—142 °C (MeOH) (106 mg, 90%); Anal. Calcd for $C_{21}H_{25}NO_6 \cdot 0.5H_2O$: C, 63.62; H, 6.61; N, 3.52. Found: C, 63.64; H, 6.57; N, 3.53. IR cm⁻¹: 3545 (OH), 1750 (OAc). ¹H-NMR δ : 1.85 (3H, s, OAc), 2.33 (3H, s, NMe), 3.78 (3H, s, OMe), 3.82 (6H, s, 2 × OMe), 4.55 (1H, s, 1-H), 6.40 (1H, s, 7-H).
- 10) In order to isolate the hydroquinone (14), hydrolysis of the monoacetate (15) with conc. HCl was carried out. The crude product showed two spots on TLC [developing solvent: CHCl₃-MeOH (10:1)]. The upper spot was identical with the p-quinone (11) and the lower one was presumed to be the hydroquinone (14). Attempted separation of the reaction mixture by preparative TLC failed to give 14: the eluate of the lower zone, which should have contained 14, again exhibited two spots, showing that a part of 14 changed to 11 during the elution.
- 11) Attempts at separation of the p-quinone (11) and the diacetate (12) by preparative TLC [developing solvent: CHCl₃-MeOH (10:1) or CHCl₃-MeOH-AcOEt (10:1:1)] failed. The ratio of the products (11 and 12) was roughly estimated as 1:3 by inspection of the ¹H-NMR spectrum. High-pressure liquid chromatography [AQUASIL column (Senshu Kagaku Co., Ltd.); eluent, MeOH-CHCl₃ (75:25)] of the mixture showed two peaks, of which the front peak was identified as the diacetate (12) and the rear one, the p-quinone (11) by comparison with authentic samples.