Communications to the Editor

Chem. Pharm. Bull. 34(5)2275—2278(1986)

DIFFERENTIATION INDUCERS OF HUMAN PROMYELOCYTIC LEUKEMIA CELLS HL-60. PHENYLCARBAMOYLBENZOIC ACIDS AND POLYENE AMIDES

Hiroyuki Kagechika, Emiko Kawachi, Yuichi Hashimoto and Koichi Shudo* Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

New inducers of the differentiation of human promyelocytic leukemia cells HL-60 to mature granulocytes, 4-(3,4-diisopropylphenyl-carbamoyl)benzoic acid ($\underline{2c}$) and 4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthyl-2-carbamoyl)benzoic acid ($\underline{2d}$), have been found. Two polyene amides which are structural hybrids of retinoic acid and the amide compounds $\underline{1a}$ and $\underline{2d}$ also exhibited the biological activity, and this result suggested a structural link between retinoic acid and the active aromatic amides.

KEYWORDS—— differentiation; phenylcarbamoylbenzoic acid; retinoic acid; polyene amide; retinoid; HL-60; leukemia

We have reported that terephthalic anilides $(\underline{1})$, $^{1)}$ e.g. Am 80 $(\underline{1a})$, have strong activity to induce the differentiation of human promyelocytic leukemia cells HL-60 to mature granulocytes. In the course of the study, we became interested in the activity of compounds $(\underline{2})$ in which the amide bond of $\underline{1}$ is reversed: the electronic nature of the two benzene rings of $\underline{2}$ must be very different from that of $\underline{1}$. This paper describes the new amide compounds, which show strong inducing activity, and some hybrid compounds of retinoic acid and the amide compound $\underline{1a}$ and $\underline{2d}$.

1

2d

The amide compounds ($\underline{2}$) were prepared by condensation of a substituted benzoyl chloride and methyl 4-aminobenzoate, followed by alkaline hydrolysis. The melting points are shown in the Table I. The hybrid compound ($\underline{3}$) was prepared by the condensation of a carboxylic acid derived from ionone (by oxidation with sodium hypochlorite) and methyl 4-aminobenzoate, followed by alkaline hydrolysis. The hybrid compound ($\underline{4}$) was prepared by the condensation of 2-amino-5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalene ($\underline{6}$) and muconic acid monomethyl ester. An analogous compound ($\underline{5}$) was prepared from $\underline{6}$ and fumaric acid monomethyl ester.

The differentiation-inducing activity of HL-60 cells was determined morphologically by examination under a microscope after Wright-Giemsa staining, and functionally by measuring Nitroblue tetrazolium (NBT) reduction in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA), 3) according to the previous papers. 1,4) The degree of differentiation was examined after incubation for 4 days.

Table I.	Differentiation of HL-60 Cells after Incubation with	
	Phenylcarbamoylbenzoic Acids	

			Myeloi	d cell	type, ^{a)} %	NBT-positive ^{b)}
Compounds	mp (°C)	log M	A	В	<u> </u>	cells, %
Control			98	2	0	2
Retinoic acid		-8	15	30	55	61
-		-9	66	20	14	19
		-10	94	6	0	3
<u>2a</u>	232-234	-6	78	18	4	12
		-7	91	7	2	3
<u>2b</u>	265-266	-6	27	35	38	40
		-7	41	35	24	37
		-8	55	24	21	32
		-9	72	20	8	16
		-10	94	6	0	7
<u>2c</u>	223-224	-6	32	28	40	46
		-7	41	27	32	44
		-8	56	26	18	27
		-9	84	15	2	9
		-10	98	2	0	2
<u>2d</u>	265-267	-7	26	31	43	53
		-8	40	23	37	56
		-9	38	36	27	53
		-10	82	10	8	18
		-11	99	1	0	6
<u>3</u>	235-237	-6	40	47	13	78
		-7	65	27	7	56
4	236.5-237	-6	, 7	66	27	88
		-7	43	45	12	67

a) A, promyelocytes; B, myelocytes and metamyelocytes; C, banded and segmented neutrophiles.

b) The percentage of cells containing formazan.

The differentiation-inducing activities of 2a-d are quite similar to those of the corresponding 1, though the electronic properties such as pKa of the carboxylic acid and the charge distribution of the new amides 2a-d should be very different from those of the other amides 1. The morphological changes clearly showed the induction of mature granulocytes, myelocytes, metamyelocytes and neutrophiles. The ratio of NBT-reducing cells paralleled the results of the morphological assessment. The data in Table I are representative examples from more than two experiments. The substituent effect on the left benzene ring of $\underline{2}$ is striking and parallel to the effect seen in the series of 1. Thus, the bulky alkyl substituent at the meta position is the most important (2a, 2b). 4-(3,4-Diisopropyl phenylcarbamoyl) benzoic acid (2c) is as active as retinoic acid, and 4-(5,6,7,8tetrahydro-5,5,8,8-tetramethylnaphthyl-2-carbamoyl) benzoic acid (2d) is more active than retinoic acid and as active as Am 80 ($\frac{1a}{1}$). The methyl esters are 1/10 as active as the corresponding free acids. These results suggest that the structure of the group intervening between the two phenyl groups can be varied over a wide range regardless of its electronic effect. This hypothesis is supported by the observation of inducing activity in compounds where the intervening group is -SO₂NH-, -CO-O-, -O-CO-, or others (data not shown), in addition to the reported -N=N- and -CH=CH-.4) These groups may have a role in determining a certain steric conformation between the polar carboxylic acid group and the hydrophobic alkyl substituent on the phenyl ring.

Since the structures of these amide compounds ($\underline{1}$ and $\underline{2}$) seem superficially to differ from that of retinoic acid, the hybrid compounds of retinoic acid and the amide compounds attracted our interest (Chart 1). Compound $\underline{3}$ is constructed from the left half of retinoic acid and the right half of $\underline{2d}$, and compound $\underline{4}$ from the right half of retinoic acid and the left half of $\underline{1a}$. Compoud $\underline{5}$ is a nor-acid of $\underline{4}$. The differentiation-inducing activities of $\underline{3}$ and $\underline{4}$ were found to be about 1/10 of that of retinoic acid, each leading the HL-60 cells to mature granulocytes (Fig. 1). The fumaric amide $\underline{5}$ was weaker than $\underline{3}$ and $\underline{4}$, as is the case with (E,E,E)-5-

Fig. 1. Morphology of Induced HL-60 Cells Cultured in the Presence of $\underline{3}$ and $\underline{4}$ for 4 Days Cytospin slide preparations of suspension cell cultures stained with Wright-Giemsa (x 400). Cells in this figure consist of metamyelocytes and banded neutrophils. Left: $\underline{3}$ (10⁻⁶ M), Right: $\underline{4}$ (10⁻⁶ M).

methyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6-heptatrienoic acid (13,14-dinorretinoic acid).⁵⁾ The significant activity of the hybrid compounds strongly supports the idea that these amide compounds and retinoic acid are structurally related agonists. Further, the structure-activity relationships of azobenzene-carboxylic acids and stilbenecarboxylic acids also support this conclusion.⁴⁾

These findings may constitute a breakthrough in the search for new retinoidal active substances, which may be clinically useful in oncology and dermatology. 6)

REFERENCES AND NOTES

- 1) H.Kagechika, E.Kawachi, Y.Hashimoto and K.Shudo, Chem. Pharm. Bull., 32, 4209
- 2) S.J.Collins, R.C.Gallo and R.E.Gallagher, Nature (London), 270, 347 (1977).
- 3) S.J.Collins, F.W.Ruscetti, R.E.Gallagher and R.C.Gallo, J. Exp. Med., 149, 969 (1979).
- 4) H.Kagechika, E.Kawachi, Y.Hashimoto and K.Shudo, Chem. Pharm. Bul., 33, 5597 (1985).
- 5) D.L.Newton, W.R.Henderson and M.B.Sporn, Cancer Res., 40, 3413 (1980).
- 6) M.B.Sporn, A.B.Roberts and D.S.Goodman (eds.), "The Retinoids," Vol.1,2, Academic Press, Inc., London, 1984; W.J.Cunliffe and A.J.Miller (eds.), "Retinoid Therapy," MTP Press Limited, Lancaster, 1984.

(Received March 4, 1986)