Chem. Pharm. Bull. 34(6)2518—2521(1986)

Sesquiterpene Lactones from *Picris hieracioides* L. var. *japonica* REGEL. I

KEIICHI NISHIMURA, TOSHIO MIYASE,* AKIRA UENO, TADATAKA NORO, MASANORI KUROYANAGI and SEIGO FUKUSHIMA

Shizuoka College of Pharmacy, 2-2-1, Oshika, Shizuoka 422, Japan

(Received November 15, 1985)

Three new sesquiterpene glycosides, picrisides A (III), B (VI) and C (VII), in addition to lactucin (I), 11β , 13-dihydrolactucin (II), crepidiaside A (IV) and ixerin F (V), have been isolated from the methanol extract of *Picris hieracioides* L. var. *japonica* REGEL (Compositae). The structures of the new compounds were determined on the basis of chemical and spectral data.

Keywords—*Picris hieracioides* var. *japonica*; Compositae; sesquiterpene glycoside; picriside A; picriside B; picriside C; lactucin; 11β , 13-dihydrolactucin; crepidiaside A; ixerin F

In the course of a search for sesquiterpene lactone glycosides in Compositae plants,¹⁾ we have investigated the constituents of *Picris hieracioides* L. var. *japonica* REGEL, and isolated a new guaianolide-type glycoside, picriside A, and two new germacranolide-type glycosides, picrisides B and C, along with lactucin,²⁾ 11β ,13-dihydrolactucin,³⁾ crepidiaside A⁴⁾ and ixerin F.⁵⁾

Lactucin (I). From the infrared (IR) and the proton nuclear magnetic resonance (¹H-NMR) spectral data, I was assumed to be lactucin, previously isolated from *Lactuca virosa* L.,⁶⁾ and its identity was confirmed by comparing the IR, ¹H-NMR and carbon-13 nuclear magnetic resonance (¹³C-NMR) spectra and melting point with those of an authentic sample.²⁾

 11β ,13-Dihydrolactucin (II). The ¹H-NMR spectrum of II was similar to that of I. Compound II was shown to be identical with 11β ,13-dihydrolactucin, which had been isolated from *Launaea mucronata*, by comparing the IR and ¹H-NMR spectra and melting point.³⁾

Picriside A (III), $C_{21}H_{26}O_{10}$, mp 248—250 °C, $[\alpha]_D$ —38.0 °. The ¹H-NMR spectrum was similar to that of I. The ¹³C-NMR spectrum was also similar to that of I (Table I), but six additional signals were observed, which were assigned to a glucopyranosyl moiety, and the chemical shift of C-15 exhibited a downfield shift of 6.2 ppm compared with that of I. Thus, III was assumed to have a glucopyranosyl group at C-15 of I.⁷⁾ Enzymatic hydrolysis of III afforded lactucin (I) as the aglycone, and acid hydrolysis afforded glucose as the sugar moiety. In the ¹H-NMR spectrum, the anomeric proton appeared at δ 4.90 (1H, d, J=7 Hz), showing that the glucosidic linkage is β . These results led us to assign the structure III to picriside A.

Crepidiaside A (IV). From ¹H-NMR spectral data, IV was assumed to be crepidiaside A, which had been isolated from *Crepidiastrum keiskeanum* NAKAI. The identity of IV was established by direct comparison [thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ¹H-NMR] with an authentic sample.⁴⁾

Ixerin F (V). By comparing the ¹H- and ¹³C-NMR spectra, V was shown to be identical with ixerin F, which had been isolated from *Ixeris tamagawaensis* KITAM.⁵⁾

Picriside B (VI), $C_{21}H_{30}O_8 \cdot H_2O$, $[\alpha]_D + 43.1^{\circ}$. The IR spectrum suggested the presence of hydroxyl groups (3420 cm⁻¹), an α,β -unsaturated γ -lactone (1760 cm⁻¹) and double bonds (1660, 1640 cm⁻¹). The ¹H-NMR spectrum exhibited two doublets at δ 6.34 (1H, J=3.3 Hz)

Chart 1

Table I. ¹³C-NMR Chemical Shifts and Coupling Constant

Carbon No.	I	II	III	V	VI	VII
Aglycone moiety						
1	133.2	133.1	133.0	41.9	126.9	125.3
2	194.8	195.1	194.6	37.4	27.8^{g}	33.6
3	133.2	133.1	134.7	80.7	35.9	83.3
4	175.0	175.2	$169.3^{c)}$	151.3	141.0^{h}	$140.9^{j)}$
. 5	49.6^{a}	$49.6^{b)}$	49.6	49.5	130.1	127.0
6	81.6	81.4	81.6	84.0	80.3	81.2
7	58.2	61.9	58.0	36.6	50.8	50.1
8	67.7	69.3	67.6	40.8	27.1^{g}	28.4
9	$49.1^{a)}$	$49.3^{b)}$	49.0	73.0	41.1	41.2
10	146.4	147.0	146.8	153.6	137.5	137.7
11	138.9	41.9	138.8	45.4	141.1^{h}	141.8^{j}
12	169.1	177.8	169.0^{c}	178.4	170.2	170.1
13	121.9	15.9	122.0	13.3	119.0	119.4
14	21.4	21.5	21.4	111.0^{e}	16.2	16.2
15	62.5	62.5	68.7	111.6^{e}	67.7	12.3
Sugar moiety						
1			104.1	104.4	105.1	102.7 (153 Hz)
2			75.1	75.3	75.1	75.1
3			78.4^{d}	78.5^{f})	78.6^{i}	$78.4^{k)}$
4			71.6	71.9	71.8	71.8
5			78.2^{d}	78.1^{f})	$78.5^{i)}$	78.2^{k}
6			62.7	63.0	63.0	62.9

Run at 22.5 MHz in pyridine- d_5 solution. a-k) Assignments may be interchanged in each column.

and 5.50 (1H, $J=3.1\,\mathrm{Hz}$), which are characteristic of exocyclic α -methylene- γ -lactone, and a broad singlet methyl signal at δ 1.36. On the other hand, in the ¹³C-NMR spectrum, twentyone signals were observed, including the signals of a glucopyranosyl residue (Table I). Reduction of VI with NaBH₄ gave VIa, having a doublet methyl signal at δ 1.21 ($J=7\,\mathrm{Hz}$) in its ¹H-NMR spectrum. Compound VIa was shown to be identical with ixerin H, which had been isolated from I. tamagawaensis KITAM., by comparing the ¹H-NMR spectra. ⁸⁾ The circular dichroism (CD) spectrum of VI showed a negative Cotton effect $[\theta]_{260}$ –919, suggesting that the γ -lactone ring fusion is 6α , 7β -trans. ⁹⁾ These results led us to assign the structure VI to picriside B.

Picriside C (VII), $C_{21}H_{30}O_8 \cdot H_2O$, $[\alpha]_D + 57.1^{\circ}$. The IR spectrum was similar to that of VI, and the ¹H-NMR spectrum was also similar to that of VI except for appearance of a

2520 Vol. 34 (1986)

vinylogous methyl signal at δ 1.98. Six signals of a glucopyranosyl residue and fifteen signals which were assignable to the aglycone moiety were observed in the ¹³C-NMR spectrum (Table I). Enzymatic hydrolysis of VII afforded VIIa as the aglycone. In the ¹H-NMR spectrum of VIIa, the signals were assigned on the basis of decoupling experiments. In nuclear Overhauser effect (NOE) experiments, irradiation of the H-3 signal increased the intensity of the H-5 signal, and irradiation of the H-15 methyl signal also produced a positive response at the H-6 signal, so that the C-3 hydroxyl group must be β -oriented. From these results, VIIa was concluded to be 3β -hydroxycostunolide, which had previously been isolated from *Porella japonica*, and the structure of VIIa was finally established by comparing the ¹H-NMR spectrum with the reported data.¹⁰⁾ Acid hydrolysis of VII gave glucose as the sugar moiety and the stereochemistry of the anomeric center was deduced from the $J_{C_1-H_1}$ coupling constant (153 Hz).¹¹⁾ These results led us to conclude the structure of picriside C to be VII.

Experimental

Melting points were determined on Yanaco MP-500 micromelting point apparatus and are uncorrected. Optical rotations were determined with a JASCO DIP-140 digital polarimeter. CD spectra were recorded with a JASCO J-20A automatic recording spectropolarimeter. IR spectra were taken on a JASCO A-202 infrared spectrophotometer. 1 H- and 13 C-NMR spectra were recorded on JEOL FX-90Q (89.55 and 22.5 MHz, respectively) and GX-400 (399.65 MHz) spectrometers. Chemical shifts are given on the δ (ppm) scale with tetramethylsilane as an internal standard (s, singlet; d, doublet; t, triplet; m, multiplet; br, broad). Gas chromatography (GC) was run on a Shimadzu GC-4BPFE gas chromatograph. HPLC was run on a Kyowa Seimitsu model K 880 instrument.

Isolation—Air-dried whole plants (15 kg) of *Picris hieracioides* L. var. *japonica* REGEL were extracted twice with methanol under reflux. The extract was concentrated under refuced pressure and the residue was suspended in water. This suspension was extracted with ether and *n*-butanol, successively. The *n*-butanol-soluble fraction (140 g) was chromatographed on a silica gel column with chloroform—methanol (9:1) as an eluent to give compounds I—VII.

Lactucin (I)—Colorless prisms (40 mg). mp 215.0—218.0 °C (methanol). IR $\nu_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3355, 3260, 1760, 1665, 1625, 1610. 1 H-NMR (400 MHz) (pyridine- d_{5}) δ: 2.52 (3H, s, H₃-14), 2.61 (1H, br d, J=13 Hz, H-9α), 2.97 (1H, dd, J=13, 10 Hz, H-9β), 3.27 (1H, br t, J=10 Hz, H-7), 3.67 (1H, t, J=10 Hz, H-6), 3.78 (1H, d, J=10 Hz, H-5), 4.03 (1H, br t, J=10 Hz, H-8), 4.77, 5.35 (each 1H, br d, J=19 Hz, H-15), 6.40 (1H, dd, J=3.1, 1.3 Hz, H-13a), 6.60 (1H, dd, J=3.3, 1.3 Hz, H-13b), 7.01 (1H, br s, H-3). 13 C-NMR: Table I.

11β,13-Dihydrolactucin (II)—Colorless crystals (80 mg). mp 94.0—96.0 °C (methanol). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3520, 3410, 1770, 1680, 1635, 1620. ¹H-NMR (90 MHz) (CDCl₃) δ: 1.45 (3H, d, J=7 Hz, H₃-13), 2.00—2.42 (2H, m, H-7, H-9β), 2.45 (3H, s, H₃-14), 2.48—2.96 (2H, m, H-9α, H-11), 3.44—3.96 (3H, m, H-5, H-6, H-8), 4.54, 4.88 (each, 1H, br d, J=18 Hz, H-15), 6.44 (1H, br s, H-3). ¹³C-NMR: Table I.

Picriside A (III)—Colorless crystals (90 mg). mp 248.0—250.0 °C (methanol–ethyl acetate). $[α]_D^{20} - 38.0$ ° (c = 0.71, methanol). *Anal*. Calcd for $C_{21}H_{26}O_9$: C, 57.53; H, 5.98. Found: C, 57.23; H, 6.06. IR $ν_{max}^{KBr}$ cm⁻¹: 3450, 1745, 1692, 1640, 1622. 1 H-NMR (90 MHz) (pyridine- d_5) δ: 2.44 (3H, s, H₃-14), 4.90 (1H, d, J = 7 Hz, anomeric proton), 4.96, 5.20 (each, 1H, br d, J = 18 Hz, H-15), 6.34 (1H, dd, J = 3.1, 1.3 Hz, H-13a), 6.56 (1H, dd, J = 3.3, 1.3 Hz, H-13b), 6.90 (1H, br s, H-3). 13 C-NMR: Table I.

Crepidiaside A (IV)—Amorphous powder (220 mg). 1 H-NMR (90 MHz) (pyridine- d_{5}) δ : 2.45 (3H, s, H₃-14), 4.93 (1H, d, J= 7 Hz, anomeric proton), 4.96, 5.22 (each, 1H, br d, J= 18 Hz, H-15), 5.36 (1H, d, J= 3.1 Hz, H-13a), 6.16 (1H, d, J= 3.3 Hz, H-13b), 6.92 (1H, br s, H-3).

Ixerin F (V)—Amorphous powder (50 mg). ¹H-NMR (90 MHz) (pyridine- d_5) δ : 1.20 (3H, d, J = 7 Hz, H₃-13), 5.08 (2H, br s, H₂-14), 5.45, 5.85 (each 1H, br s, H-15). ¹³C-NMR: Table I.

Picriside B (VI)—Amorphous powder (130 mg), $[\alpha]_D^{19} + 43.1^{\circ}$ (c = 1.01, methanol). *Anal.* Calcd for $C_{21}H_{30}O_8 \cdot H_2O$: C, 58.87; H, 7.53. Found: C, 59.06; H, 7.52. IR $v_{\rm max}^{\rm KBr} {\rm cm}^{-1}$: 3420, 1760, 1660, 1640. ¹H-NMR (90 MHz) (pyridine- d_5) δ: 1.36 (3H, br s, H₃-14), 5.50 (1H, d, J = 3.1 Hz, H-13a), 6.34 (1H, d, J = 3.3 Hz, H-13b). ¹³C-NMR: Table I. CD ($c = 4.66 \times 10^{-4}$, methanol) [θ] (nm): -919 (260).

Picriside C (VII)—Amorphous powder (130 mg), $[\alpha]_D^{23}$ +57.1° (c=0.28, methanol). *Anal.* Calcd for $C_{21}H_{30}O_8 \cdot H_2O$: C, 58.87; H, 7.53. Found: C, 58.72; H, 7.24. IR ν_{max}^{KBr} cm⁻¹: 3430, 1765, 1660, 1630. ¹H-NMR (90 MHz) (pyridine- d_5) δ: 1.37 (3H, br s, H₃-14), 1.98 (3H, br s, H₃-15), 5.55 (1H, d, J=3.1 Hz, H-13a), 6.38 (1H, d, J=3.4 Hz, H-13b). ¹³C-NMR: Table I. CD (c=1.05 × 10⁻³, methanol) [θ] (nm): -5039 (262).

Enzymatic Hydrolysis of Picriside A (III)—Picriside A (ca. 1 mg) was dissolved in water (0.2 ml) and the solution was treated with crude hesperidinase (ca. 1 mg) for 3 h at 35 °C with stirring. The solution was extracted with ethyl acetate. After concentration of the organic layer, the aglycone was identified as lactucin by HPLC. Conditions: column, YMC-Pack AM-312 6 mm × 15 cm; solvent, acetonitrile-water (3:7); 1.2 ml/min; detector, UV 258 nm; t_R

3.7 min.

Enzymatic Hydrolysis of Picriside C (VII)—Picriside C (12 mg) was dissolved in water (2 ml) and the solution was treated with crude hesperidinase (4 mg) for 3 h at 35 °C with stirring. The solution was extracted with ethyl acetate, and the extract was purified on a silica gel column to give an aglycone (VIIa) (5 mg). ¹H-NMR (400 MHz) (CDCl₃) δ: 1.46 (3H, br s, H₃-14), 1.63—1.73 (1H, m, H-8 β), 1.74 (3H, br s, H₃-15), 2.05—2.15 (2H, m, H-8 α , H-9 α), 2.30 (1H, br t, J = 10 Hz, H-2 β), 2.40—2.50 (2H, m, H-2, H-9 β), 2.53 (1H, br t, J = 9 Hz, H-7), 4.29 (1H, br dd, J = 10, 6 Hz, H-3), 4.62 (1H, t, J = 9 Hz, H-6), 4.80 (1H, br d, J = 9 Hz, H-5), 4.90 (1H, br d, J = 10 Hz, H-1), 5.55 (1H, d, J = 2.9 Hz, H-13a), 6.29 (1H, d, J = 3.4 Hz, H-13b).

Reduction of Picriside B (VI)——Picriside B (6 mg) was dissolved in methanol (1 ml) and stirred with NaBH₄ (5 mg) for 10 min at 0 °C. A small amount of acetic acid and excess water were added, the methanol was evaporated off *in vacuo*, and the residual solution was extracted with *n*-butanol. The *n*-butanol extract was purified by HPLC to give ixerin H (VIa). ¹H-NMR (90 MHz) (pyridine- d_5) δ : 1.21 (3H, d, J=7 Hz, H₃-13), 1.35 (3H, br s, H₃-14).

Acid Hydrolysis of Glycosides—A solution of glycoside (ca. 1 mg) in 10% sulfuric acid (1 ml) was heated on a boiling water bath for 20 min. The solution was passed through an Amberlite IR-45 column, and the eluate was concentrated to give a residue, which was reduced with sodium borohydride (ca. 2 mg) for 1 h at room temperature. The reaction mixture was passed through an Amberlite IR-120 column, and the eluate was concentrated to dryness. Boric acid was removed by co-distillation with methanol and the residue was acetylated with acetic anhydride and pyridine (each 1 drop) at 100 °C for 1 h. The reagents were evaporated off *in vacuo*. Glucitol acetate was detected by GC in the hydrolysate of each glycoside. Conditions: column 2% OV-17, 2 mm × 2 m; column temperature 215 °C; carrier gas, N₂; flow rate, 40 ml/min; t_R 6.2 min.

Acknowledgement We thank Professer Y. Asakawa, Tokushima-Bunri University, for providing ¹H-NMR data and for measurement of 400 MHz NMR spectra. We are also grateful to Mrs. H. Kitamura of our college for elemental analyses.

References and Notes

- 1) T. Miyase, K. Yamaki and S. Fukushima, *Chem. Pharm. Bull.*, **32**, 3912 (1984); H. Asada, T. Miyase and S. Fukushima, *ibid.*, **32**, 1724 (1984); K. Nishimura, T. Miyase, A. Ueno, T. Noro, M. Kuroyanagi and S. Fukushima, *ibid.*, **33**, 3361 (1985).
- J. S. Pyrek, Rocz. Chem., 51, 2165 (1977); S. El-Masry, M. R. I. Saleh, N. M. Ghazy and M. Vuilhorgne, Acta Pharm. Suec., 17, 137 (1980).
- 3) T. M. Sarg, A. A. Omar, S. M. Khafagy, M. Grenz and F. Bohlmann, Phytochemistry, 21, 1163 (1982).
- 4) S. Adegawa, T. Miyase, A. Ueno, T. Noro, M. Kuroyanagi and S. Fukushima, *Chem. Pharm. Bull.*, 33, 4906 (1985).
- 5) H. Asada, T. Miyase and S. Fukushima, Chem. Pharm. Bull., 32, 3036 (1984).
- 6) D. H. R. Barton and C. R. Narayanan, J. Chem. Soc., 1958, 963.
- 7) K. Tori, S. Seo, Y. Yoshimura, H. Arita and Y. Tomita, Tetrahedron Lett., 1977, 179.
- 8) H. Asada, T. Miyase and S. Fukushima, Chem. Pharm. Bull., 32, 3403 (1984).
- 9) W. Stocklin, T. G. Waddell and T. A. Geissman, Tetrahedron, 26, 2397 (1970).
- 10) Y. Asakawa, M. Toyota and T. Takemoto, *Phytochemistry*, 20, 257 (1981).
- 11) K. Bock, I. Lundt and C. Pederson, Tetrahedron Lett., 1973, 1037.