Communications to the Editor

Chem. Pharm. Bull. 34(6)2642-2645(1986)

SYNTHESIS OF 1-DEOXYNOJIRIMYCIN AND 1-DEOXYMANNOJIRIMYCIN

Hiroyuki Setoi, Hidekazu Takeno, and Masashi Hashimoto*

Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 5-2-3 Tokodai, Toyosato-machi, Tsukuba-gun, Ibaraki 300-26, Japan

Here the synthesis of 1-deoxynojirimycin $(\underline{1})$ and 1-deoxymannojirimycin $(\underline{2})$ from D-mannose is reported and their immunostimulating activity is evaluated.

KEYWORDS — piperidine alkaloid; azapyranose; D-mannose; immunostimulating activity

Polyhydroxylated alkaloids having piperidine or indolizidine skeletons have been the focus of intensive investigation because of their interesting biological activities. 1-Deoxynojirimycin $(\underline{1})^{1}$ and castanospermine $(\underline{3})^{2}$ inhibit glucosidases while 1-deoxymannojirimycin $(\underline{2})^{3}$ and swainsonine $(\underline{4})^{4}$ inhibit mannosidases. Also we have found recently that in mice $\underline{4}$ restores mitogenic responses depressed by immunosuppressive factors. This is probably accomplished through its inhibition of glycosidases.

In the preceding papers, we reported enantiospecific total synthesis of the indolizidine alkaloids, swainsonine 6 and castanospermine, 7 starting from D-mannose. As a part of our investigation in this field, we aimed at synthesizing polyhydroxylated piperidine alkaloids, 1-deoxynojirimycin (1) and 1-deoxymannojirimycin (2). 8 Here we report the synthesis of these two alkaloids, starting from the intermediates used for our synthesis of swainsonine and castanospermine, and an analysis of their immunostimulating activity.

1-Deoxynojirimycin (1)

The starting epoxy-alcohol $\underline{5}$, prepared from D-mannose as described in the preceding paper, 7) was converted to t-butyldimethylsilyl(TBDMS) ether $\underline{6}$ (77%) by silylation with TBDMSCl (imidazole/DMF, r.t., 2 days). The Cbz group in $\underline{6}$ was removed by catalytic reduction (H₂ (3 atm)/Pd-black/EtOH) to give amine $\underline{7}$, which, without purification, was refluxed in methoxyethanol to afford piperidine $\underline{8}$ (74% from $\underline{6}$). Fixation of the 4,5- trans-diol in $\underline{7}$ by acetonide protection thus induced the selective formation of the 6-membered piperidine ring in $\underline{8}$. Removal of the protecting groups in $\underline{8}$ by treatment with 75% aqueous TFA (r.t., overnight) provided $\underline{1}$ (mp 192-195°C, $[\alpha]_D^{20}$ +46.7° (c 0.2, H₂O), 90%).

1-Deoxymannojirimycin (2)

The hydroxy group in the starting material $\underline{9}$, prepared from D-mannose as described in the preceding paper, $\underline{6}$) was protected as TBDMS ether in a manner similar to that described above to give $\underline{10}$ (77%). Selective removal of the 1,2-acetonide protecting group in $\underline{10}$ by treatment with p-TsOH (0.1 eq) in 90% aqueous acetone (r.t., 30 h) produced diol $\underline{11}$ (15%) along with a 43% recovery of the starting $\underline{10}$. The 1-hydroxy group in $\underline{11}$ was selectively silylated by treating it with 1 eq of TBDMSC1 (imidazole/DMF, r.t., 6 h) to provide $\underline{12}$ (94%). Oxidation of $\underline{12}$ with Collins reagent (CH₂Cl₂, r.t.) afforded ketone $\underline{13}$ (unstable) in 80% yield. Removal of the Cbz group in $\underline{13}$ by catalytic reduction (H₂ (3 atm)/Pd-black/ EtOH) directly provided piperidine $\underline{16}$ (74%), which was produced via stereoselective, intramolecular reductive alkylation of the intermediate amino-ketone $\underline{14}$. The reduction seemed to occur selectively from the less hindered β -side of the cyclic imine intermediate $\underline{15}$. Removal of the protecting groups in $\underline{16}$ by treatment with 75% aqueous TFA (r.t., overnight) afforded $\underline{2}$ (mp 183-185°C, $\underline{[\alpha]}_D^{19}$ -33.7° (c 0.2, MeOH), 86%).

The immunostimulating activity of $\underline{1}$ and $\underline{2}$ was evaluated by measuring their competitive effect against immunosuppressive factors which suppress Con Astimulated lymphocyte proliferation. The minimum effective concentrations (MEC) of $\underline{1}$ and $\underline{2}$ were 50 and 32 μ g/ml, respectively, while the MEC for swainsonine, a standard compound, is 0.01 μ g/ml. It is interesting that $\underline{1}$ and $\underline{2}$ have the activity, though considerably less than swainsonine.

ACKNOWLEDGEMENT $\,\,\,$ We are grateful to Dr. H. Terano and his colleagues for the biological assays.

REFERENCES AND NOTES

- 1) D.D.Schmidt, W.Frommer, L.Muler, and E.Truseeheiy, Naturwissenschaften, $\underline{66}$, 584 (1979).
- 2) L.D.Hohenchuftz, E.A.Bell, P.J.Jewees. D.P.Lerwolfhy, R.J.Pyrce, W.Arnold, and J.Clardy, Phytochemistry, 20, 811 (1981).
- 3) L.E.Fellows, J.Chem. Soc., Chem. Commun., 1979, 977.
- 4) S.M.Colegate, P.R.Dorling, and C.R.Huxtable, Aust. J. Chem., <u>32</u>, 2257 (1979).
- 5) a) M.Hino, O.Nakayama, Y.Tsurumi, K.Adachi, T.Shibata, H.Terano, M.Kohsaka, H.Aoki, and H.Imanaka, J. Antibiot., 38, 926 (1985); b) T.Kino, N.Inamura, K.Nakahara, S.Kiyoto, T.Goto, H.Terano, M.Kohsaka, H.Aoki, and H.Imanaka, J. Antibiot., 38, 936 (1985).

- 6) H.Setoi, H.Takeno, and M.Hashimoto, J. Org. Chem., <u>50</u>, 3948 (1985).
- 7) H.Setoi, H.Takeno, and M.Hashimoto, Tetrahedron Lett., 26, 4617 (1985).
- 8) For the previously reported syntheses of $\underline{1}$ and $\underline{2}$, see R.C.Bernotas and B.Ganem, Tetrahedron Lett., $\underline{26}$, 1123 (1985) and references cited therein.
- 9) Ketone $\underline{13}$ tends to be epimerized probably to the diastereoisomer $\underline{17}$ via an enolate intermediate.

17

10) The selected physical data. 8: mp 109-110°C; [α] $_{\rm D}^{20}$ +20.1° (c 0.2, CHCl $_3$); 1 H-NMR (CDCl $_3$) δ :2.16(br s, 2H), 2.50(dd, J=3.5, 9Hz, 1H), 2.6-2.9(m, 1H), 3.3-3.5 (m, 3H), 3.60(m, 1H), 3.7-4.0(m, 2H). 1: 1 H-NMR (D $_2$ O) δ :2.41(dd, J=8, 10.5Hz, 1H), 2.55(m, 1H), 3.10(dd, J=4.5, 10.5Hz, 1H), 3.2-3.6(m, 3H), 3.59(dd, J=5, 10Hz, 1H) 3.83(dd, J=5, 10Hz, 1H). 13: [α] $_{\rm D}^{20}$ +8.12° (c 0.6, CHCl $_3$); 1 H-NMR (CDCl $_3$) δ :3.2-3.5(m, 2H), 4.0-4.5(m, 3H), 4.62(ABq, J=12Hz, 2H), 5.13(s, 2H), 5.13(br s, 1H). 16: mp 43-45°C; [α] $_{\rm D}^{20}$ -36.5°(c 0.5, CHCl $_3$); 1 H-NMR (CDCl $_3$) δ :2.33(dt, J=9, 4Hz, 1H), 2.94(dd, J=3, 15Hz, 1H), 3.41(d, J=15Hz, 1H), 3.53 (dd, J=3, 9Hz, 1H), 3.4-4.0(m, 3H), 4.11(m, 1H). 2: 1 H-NMR (D $_2$ O) δ :2.71(dt, J=5, 10Hz, 1H), 2.93(d, J=14Hz, 1H), 3.15(dd, J=3, 14Hz, 1H), 3.61(dd, J=3, 10Hz, 1H), 3.71(t, J=10Hz, 1H), 3.80(dd, J=5, 11Hz, 1H), 3.86(dd, J=4, 13Hz, 1H), 4.09(m, 1H).

(Received March 13, 1986)