[Chem. Pharm. Bull.] 34(7)3029—3032(1986)]

Chemoselective Reduction of β -Keto-esters to β -Keto-alcohols

KIMIAKI ISOBE,*,a KUNIHIKO MOHRI,a HIROMICHI SANO,a JUN-ICHI TAGA,a and Yoshisuke Tsudab

Showa College of Pharmaceutical Sciences, 5-1-8 Tsurumaki, Setagaya-ku, Tokyo 154, Japan and Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan

(Received January 20, 1986)

Chemoselective reduction of the ester group in keto-esters was studied. Treatment of potassium (or lithium) enolate anions of β -keto-esters with aluminum hydride reduced the ester group chemoselectively to give β -keto-alcohols in moderate yield. Similar reactions of γ - and δ -keto-esters were not chemoselective, yielding a mixture of the diol and the keto-alcohol.

Keywords—chemoselective reduction; aluminum hydride; β -keto-ester; β -keto-alcohol; potassium hydride; enolate anion

In 1968, Yoon and Brown¹⁾ suggested that it should be possible to utilize aluminum hydride for selective reduction of the ester group in enolate salts of highly enolizable β -keto-esters without attack on the enolate anion. Based on the suggested method, Corey and Cane²⁾ converted the sodium enolate of 2-hydroxymethylene-4-tert-butylcyclohexanone to the 2-hydroxymethylcyclohexanone derivative in satisfactory yield by treatment with alminum hydride. However, neither of them tested its applicability to β -keto-esters. Since β -keto-esters are readily accessible by various methods and are frequently used as intermediates in organic syntheses, the above method, if it proceeds with considerable yield, would be a valuable alternative route for the preparation of α -hydroxymethyl ketones which are potential precursors of biologically active compounds such as α -methylene ketones. Here we report our results on aluminum hydride reduction of keto-esters.

The potassium (or lithium) salts of keto-esters were generated by reaction with KH or

TABLE I. Reduction of Enolate Salts of Keto-esters with AlH₃ to Keto-alcohols

Keto-ester	Product (Keto-alcohol)	Yield (%)
2-Carbethoxycyclohexanone (1)	2-Hydroxymethylcyclohexanone (2)	59 (53) ^{a)}
2-Carbomethoxycyclohexanone (3)	2	63
2-Carbethoxy-4,4-ethylenedioxy-cyclohexanone (4)	4,4-Ethylenedioxy-2-hydroxymethyl-cyclohexanone (5)	38 (36) ^{a)}
PhCOCH ₂ COOC ₂ H ₅ (6)	PhCOCH ₂ CH ₂ OH (7)	$38^{b)}$
8	9	53
2-Carbethoxy-2-methylcyclo- hexanone (10)	2-Hydroxymethyl-2-methylcyclo- hexanone (11)	43
PhCOCH ₂ CH ₂ COOCH ₃ (12)	PhCOCH ₂ CH ₂ CH ₂ OH (13)	$17^{c)}$
PhCOCH ₂ CH ₂ CH ₂ COOCH ₃ (15)	PhCOCH ₂ CH ₂ CH ₂ CH ₂ OH (16) ^{d)}	$13^{e)}$

a) Yields obtained by the LDA method are given in parentheses. b) Starting material (8) was recovered in ca. 45% yield. c) The diol (14) was obtained as a major product. d) Isolated as the 2,4-dinitrophenylhydrazone. e) The diol (17) was obtained as a major product.

1: $R^1 = C_2H_5$, $R^2 = R^3 = H$

 $2: R^2 = R^3 = H$

 $3: R^1 = CH_3, R^2 = R^3 = H$

5: $R^2 = H$, $R^3 + R^3 = OCH_2CH_2O$

11

4: $R^1 = C_2H_5$, $R^2 = H$, $R^3 + R^3 = OCH_2CH_2O$

11: $R^2 = CH_3$, $R^3 = H$

10: $R^1 = C_2H_5$, $R^2 = CH_3$, $R^3 = H$

Chart 2

23

22

M = K or Li

lithium diisopropylamide (LDA) in tetrahydrofuran (THF), and, on treatment with a THF solution of AlH₃, furnished the keto-alcohols in the yields shown in Table I. The resultant keto-alcohols were purified by silica gel chromatography.

The highly enolizable β -keto-esters (1), (3), (4), and (6) gave the desired β -keto-alcohols in moderate yields. The β -keto-ester (8)³⁾ was also reduced smoothly to the β -keto-alcohol (9) by this method; interestingly, the amide group remained intact. This is in contrast to a report that an amide group is smoothly reduced to the amine by aluminum hydride.¹⁾ This inertness of the amide group in 8 is presumably due to the presence of the adjacent bulky tertbutyldimethylsilyloxy group. In fact, the non-hindered tertiary amide (18) was smoothly

Chart 3

reduced to the amine (19) by the same reagent. It is noteworthy that 2-carbomethoxy-2-methylcyclohexanone (10), which is not as highly enolizable as the compounds mentioned above, also gave 2-hydroxymethyl-2-methylcyclohexanone (11) in moderate yield (43%). The yields of keto-alcohols from the γ - and δ -keto-esters (12) and (15) were low, as expected. The major product was the diol in each case. Therefore the above results suggest that this chemoselective reduction proceeds smoothly only when a stable enolate, (21) or (23), is formed as an intermediate. The 3-keto-triterpenoid (24) did not give the keto-alcohol, but instead gave methyl oleanolate (25) and erythrodiol (26) in 47% and 41% yields, respectively.

Experimental

Melting points were determined on a Yanaco model MP apparatus, and are uncorrected. The infrared (IR) spectra were taken with a Jasco IR-810 spectrophotometer. The proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a Hitachi R-600 spectrometer or a JEOL FX-100 spectrometer, in CDCl₃ with tetramethylsilane as an internal standard, and mass spectra (MS) were determined with a JEOL JMS D-300 spectrometer.

Aluminum Hydride Reduction of β-Keto-esters (General Procedure)—Potassium Hydride Method: 2-Carbomethoxycyclohexanone (3) (312 mg, 2.0 mmol) and KH (100 mg, 2.5 mmol, Alfa) in THF (30 ml) were stirred for 30 min at 0 °C. AlH₃ (3 mmol) (prepared from 2 eq mol of LiAlH₄ and 1 eq mol of H_2SO_4 in THF according to Yoon and Brown¹⁾ in THF was added. After being stirred for 1 h at room temperature, the mixture was quenched with 10% KF solution, acidified with 10% HCl, and extracted with CH_2Cl_2 . The organic extract was washed with water, dried, and concentrated to leave an oil, which was purified by passing it through a short column of silica gel, eluting with *n*-hexane followed by ethyl acetate. The ethyl acetate eluate gave 2-hydroxymethylcyclohexanone (2) (160 mg, 63%), as a colorless oil. Spectral data of 2 were identical with those of an authentic sample.⁴⁾

By this method the β -keto-esters (3), (4), (6), (8), and (10) were reduced to the corresponding β -keto-alcohol (2), (5), (7), (9), and (11),⁴⁾ respectively. Similarly, methyl 3-benzoylpropionate (12) gave the keto-alcohol (13) and the diol (14) in 17% and 30%, yields, respectively, and methyl 4-benzoylbutyrate (15) gave the keto-alcohol (16) (isolated as the 2,4-dinitrophenylhydrazone) and the diol (17) in 13% and 25% yields, respectively.

LDA Method: 2-Carbetoxycyclohexanone (1) (368 mg, 2.0 mmol) was added to LDA-THF solution (2.4 mmol), and the mixture was stirred for 30 min at 0 °C. AlH₃-THF solution (3 mmol) was added and the whole was stirred for 1 h at room temperature. After work-up as above, the oily residue was purified by chromatography on a short silica gel column eluting with ethyl acetate to give 2-hydroxymethylcyclohexanone (2) (150 mg, 53%).

The products 5, 7, 9, 13, 14, 16, and 17 had the following physical properties.

4,4-Ethylenedioxy-2-hydroxymethylcyclohexanone (5)—Oil. IR (CHCl₃) cm⁻¹: 3575, 1710. ¹H-NMR δ : 3.70 (2H, d, J=7.5 Hz, -CH₂OH), 4.05 (4H, s, -OCH₂CH₂O-). MS m/z: 186 (M $^+$).

- **2-Benzoylethanol (7)**—Oil. The 2,4-dinitrophenylhydrazone had mp 187—189 °C (lit. 5) mp 187—189 °C). IR (CHCl₃) cm⁻¹: 3475, 1680. 1 H-NMR δ : 3.21 (2H, t, -COCH₂-), 4.04 (2H, t. -CH₂OH), 8.2—7.2 (5H, aromatic protons).
- 7-tert-Butyldimethylsilyloxy-2-hydroxymethyl-6*H*-pyrido[2,1-*i*]indole-1,6-dione (9)—Colorless prisms, mp 84—85.5 °C. IR(KBr) cm⁻¹: 3430, 1720, 1685. 1 H-NMR δ : 0.15 (6H, s, Si(CH₃)₂), 0.85 (9H, s, C(CH₃)₃), 3.70 (2H, m, -CH₂OH), 4.04 (1H, d, J = 6 Hz, -CHOSi), 5.54 (1H, m, olefinic proton), 5.87 (1H, m, olefinic proton). MS m/z Calcd for C₁₉H₃₁NO₄Si: 365.2023. Found: 365.2035.
- **2-Benzoylpropanol (13)**—mp 31—33 °C (lit.⁵⁾ mp 32—33 °C). The 2,4-dinitrophenylhydrazone had mp 176—178 °C. IR (CCl₄) cm⁻¹: 3460, 1690. ¹H-NMR δ : 1.99 (2H, quintet, J=6.6 Hz), 3.11 (2H, t, J=6.6 Hz), 3.72 (2H, t, J=6.6 Hz), 7.2—8.2 (5H, aromatic protons).
 - 1-Phenylbutane-1,4-diol (14)—mp 73—75 °C (lit.6)mp 75 °C). IR (CCl₄) cm⁻¹: 3450, 3615.
- **2-Benzoylbutanol** (16)—The 2,4-dinitrophenylhydrazone had mp 142—144°C (lit.⁵⁾ mp 142—144°C). IR(KBr) cm⁻¹: 3430, 3310, 1620, 1595.
 - 1-Phenylpentane-1,5-diol (17)—mp 53 °C (lit.6) mp 53.5 °C). IR(CCl₄)cm⁻¹: 3490, 3615.
- 15,16-Dimethoxyerythrinan (19)—KH-AlH₃ Method: 15,16-Dimethoxy-8-oxoerythrinan (18) (301 mg. 1.0 mmol) was added to KH (48 mg, 1.2 mmol) in THF solution, and the mixture was stirred for 30 min at 0 °C. AlH₃-THF solution (1.2 mmol) was added with stirring. Stirring was continued for 1 h at room temperature, then the reaction mixture was quenched with 10% KF aqueous solution, and diluted with CH_2Cl_2 . The organic layer was dried over MgSO₄, and concentrated *in vacuo* to give an oil, which was dissolved in ether and treated with a solution of picric acid in ethanol. The separated yellow crystals were collected and recrystallized from ethanol to give the picrate of 19, 335 mg (65%) as yellow prisms, mp 188—189 °C (lit. 7) mp 180 °C).
- AlH₃ Method: A mixture of the lactam (18) (301 mg, $1.0 \,\mathrm{mmol}$) and AlH₃-THF solution (1.2 mmol) in THF (15 ml) was stirred at room temperature for 1 h. The product, after work-up as above, was converted to the picrate, yielding 377 mg (73%) as yellow prisms, mp 187—189 °C.
- KH-AlH₃ Reduction of Methyl 3-Oxoolean-12-en-28-oate (24)—A solution of the 3-keto-triterpenoid (24) (468 mg, 1.0 mmol) was reduced by the KH-AlH₃ method to give methyl 3-hydroxyolean-12-en-28-oate (25), 221 mg (47%), mp 196—198 °C (lit.⁸⁾ mp 197—199 °C), and erythrodiol (26), 180 mg (41%), mp 233—235 °C (lit.⁸⁾ mp 235—237 °C).

References

- 1) N. M. Yoon and H. C. Brown, J. Am. Chem. Soc., 90, 2927 (1968).
- 2) E. J. Corey and D. Cane, J. Org. Chem., 36, 3070 (1971).
- 3) J. Taga, K. Isobe, C. Mohri, and Y. Tsuda, The Abstracts of Papers, the 101st Meeting of the Pharmaceutical Society of Japan, Kumamoto, April, 1981,
- 4) J. Colonge, J. Dreux, and H. Delplace, Bull. Soc. Chim. Fr., 1956, 1635; F. Hirano and S. Wakabayashi, Bull. Chem. Soc. Jpn., 48, 2579 (1975).
- 5) D. J. Pasto and M. P. Serve, J. Am. Chem. Soc., 87, 1515 (1965).
- 6) N. Mori, S. Omura, and Y. Tsuzuki, Bull. Chem. Soc. Jpn., 38, 1631 (1965).
- 7) A. Mondon, Justus Liebigs Ann. Chem., 628, 123 (1959).
- 8) C. Djerassi, R. M. McDonald, and A. J. Lemin, J. Am. Chem. Soc., 75, 5940 (1953).