# CHEMICAL & PHARMACEUTICAL BULLETIN

Vol. 34, No. 9 September 1986

# **Regular Articles**

Chem. Pharm. Bull. 34(9)3539—3548(1986)

# The Crystal and Molecular Structures of Ceftizoxime and Ceftizoxime Monohydrochloride Monohydrate

AKIRA MIYAMAE,\* SHIGETAKA KODA and YUKIYOSHI MORIMOTO

Analytical Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, 2-chome, Kashima, Yodogawa-ku, Osaka 532, Japan

(Received February 1, 1986)

The crystal and molecular structures of ceftizoxime (CZX) and its monohydrochloride monohydrate (CZX-HCl) were elucidated by X-ray structure analysis. The aminothiazolyl-methoxyimino group in the cephem C(7) substituent of both substances is in a quasi coplane, as in other cephalosporins with this C(7) substituent. The orientations of these coplanes to the cephem moiety vary such that the rotation of the cephem C(7) side chain seems not to be rigidly constrained. The exocyclic amido groups in both CZX and CZX-HCl are also planar, with intermolecular hydrogen bonds between the nitrogen and the oxygen atoms of adjacent molecules. The conformations resemble those described for the peptide bond moiety in proteins.

**Keywords**—ceftizoxime; cephalosporin antibiotic; X-ray analysis; molecular conformation; crystal structure

#### Introduction

Ceftizoxime,<sup>1)</sup> (6R,7R)-7-[(Z)-2-(2-amino-4-thiazolyl)-2-methoxyiminoacetamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, is a new cephalosporin antibiotic characterized by an aminothiazolyl-methoxyimino group in the C(7) side chain but with no substituent at the C(3) position. The chemical structure and atomic numbering of ceftizoxime are shown in Fig. 1.

This compound displays very potent antibacterial activity with a broad spectrum (including  $\beta$ -lactamase-producing bacteria), characteristics attributable to the stereochemistry of the oxyimino group in the C(7) side chain. This type of cephalosporin generally has 4—32 times greater antibiotic activity in the *syn* configuration (I) than in the *anti* configuration (II),<sup>1)</sup> suggesting that geometrical isomerism of the oxyimino group contributes to the structural specificity for antibacterial activity. To investigate conformational features and to clarify the properties of the C(7) side chain, we have undertaken X-ray crystallographic studies of a series of cephalosporins with the *anti* oxyimino group.

We report here the crystal and molecular structures of ceftizoxime (CZX) and its monohydrochloride monohydrate (CZX-HCl), and briefly compare them with those of other cephalosporins which possess the same C(7) substituent, RU25159,<sup>2)</sup> cefmenoxime A

Numbering

[cefmenoxime hydrochloride molecule (CMX A)] and cefmenoxime B [cefmenoxime molecule

We are also carrying out the X-ray structure analysis of sodium ceftizoxime, and preliminary results have been published elsewhere.<sup>4)</sup> The details of the analysis will be reported in the near future.

#### **Experimental**

X-Ray Analysis — Both CZX and CZX-HCl crystallized as colorless, rod-like crystals in the orthorhombic space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (CZX from an acidified aqueous solution of the sodium salt, CZX-HCl from an acetonitrile, chloroform, methanol and hydrochloric acid solution of the sodium salt). Crystal data for CZX and CZX-HCl are shown in Table I. Crystal densities were determined by a flotation method.

The intensities of 1556 independent reflections up to  $2\theta = 125^{\circ}$  for CZX and 1876 reflections for CZX-HCl were collected on a Rigaku AFC-5 diffractometer with graphite-monochromated CuK, radiation. Corrections were applied for Lorentz and polarization factors but not for absorption and extinction, because the crystal sizes were small (CZX,  $0.10 \times 0.30 \times 0.35$  mm; CZX-HCl,  $0.10 \times 0.10 \times 0.22$  mm).

Structure Determination and Refinement—The structure of CZX was solved by a direct method using the MULTAN 74 program,<sup>5)</sup> the positions for all CZX non-hydrogen atoms being successfully assigned. The structure was refined by a block-diagonal matrix least-squares method.<sup>6)</sup> The positions of all hydrogen atoms were determined from a difference Fourier synthesis. After further refinement with anisotropic temperature factors for all nonhydrogen atoms and isotropic temperature factors for hydrogen atoms, the final R factor was 0.074 for 1404 non-zero reflections.

The structure of CZX-HCl was solved by a combination of the direct method using the MULTAN 74 program<sup>5)</sup> and the Fourier technique. From an E-map using one set of phases with a high value of figure of merit, the positions of most CZX non-hydrogen atoms could be assigned. Successive Fourier syntheses revealed the positions of the remaining non-hydrogen atoms, including the water oxygen and chlorine atoms, in the crystal. The structure was refined by a block-diagonal least-squares method. 61 The positions of hydrogen atoms were determined from a

TABLE I. Crystal Data

|                                                                                         | CZX                     | CZX-HCl                                                                                            |
|-----------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------|
| Chemical formula                                                                        | $C_{13}H_{13}N_5O_5S_2$ | C <sub>13</sub> H <sub>13</sub> N <sub>5</sub> O <sub>5</sub> S <sub>2</sub> ·HCl·H <sub>2</sub> O |
| Formula weight                                                                          | 383.40                  | 437.87                                                                                             |
| Crystal system                                                                          | Orthorhombic            | Orthorhombic                                                                                       |
| Space group                                                                             | $P2_{1}2_{1}2_{1}$      | $P2_{1}2_{1}2_{1}$                                                                                 |
| Z                                                                                       | 4                       | 4                                                                                                  |
| a (Å)                                                                                   | 4.950 (1)               | 4.5626 (3)                                                                                         |
| b (Å)                                                                                   | 14.848 (2)              | 15.726 (1)                                                                                         |
| c (Å)                                                                                   | 22.258 (4)              | 27.314 (2)                                                                                         |
| $V(\mathring{\mathbf{A}}^3)$                                                            | 1635.9 (5)              | 1959.8 (2)                                                                                         |
| $\mu \left( \operatorname{Cu} K_{\alpha} \right) \left( \operatorname{mm}^{-1} \right)$ | 3.241                   | 4.078                                                                                              |
| λ(Å)                                                                                    | 1.5418                  | 1.5418                                                                                             |
| $D_{\rm m}  ({\rm Mgm}^{-3})$                                                           | 1.520 (2)               | 1.488 (1)                                                                                          |
| $D_{\rm v} ({\rm Mgm}^{-3})$                                                            | 1.557                   | 1.484                                                                                              |

difference Fourier synthesis, but those of two water hydrogen atoms could not be determined. After further refinement with anisotropic temperature factors for all non-hydrogen atoms and isotropic temperature factors for hydrogen atoms, the final R factor was 0.076 for 1356 non-zero reflections.

The quantity minimized was  $\Sigma w(|F_o| - k |F_c|)^2$ , (w=1). The atomic scattering factors cited in the International Tables for X-Ray Crystallography Vol. IV<sup>7</sup> were used. All computations were carried out on a FACOM M-150F computer at our Central Research Laboratories.

Table II. Final Atomic Coordinates and Isotropic Thermal Parameters  $(\mathring{A}^2)$  with the Estimated Standard Deviations in Parentheses

| Atom $x$ $y$ $z$ $B$ (Ų) $x$ $y$ $z$ $B$ (Å           N(1)         0.5979 (15)         0.5585 (5)         0.2734 (3)         2.0         0.1136 (26)         0.4602 (6)         0.3770 (3)         2.3           C(2)         0.4680 (21)         0.5171 (6)         0.2256 (4)         2.5         0.2361 (34)         0.5005 (8)         0.3355 (4)         2.7           C(3)         0.5178 (23)         0.4298 (7)         0.2130 (4)         3.4         0.2345 (41)         0.5862 (8)         0.3322 (5)         3.9           C(4)         0.7095 (26)         0.3692 (7)         0.2470 (5)         3.9         0.1333 (50)         0.6481 (9)         0.3687 (5)         4.4           S(5)         0.7421 (6)         0.4022 (2)         0.3259 (1)         3.2         0.1183 (10)         0.6039 (2)         0.4313 (1)         3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |             | CZX        |            |                     |             | CZX-HCl    |            |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------|------------|---------------------|-------------|------------|------------|---------------------|
| C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Atom   | х           | y          | z          | B (Å <sup>2</sup> ) | x           | У          | z          | $B(\mathring{A}^2)$ |
| C(3) 0.5178 (23) 0.4298 (7) 0.2130 (4) 3.4 0.2345 (41) 0.5862 (8) 0.3322 (5) 3.9 C(4) 0.7095 (26) 0.3692 (7) 0.2470 (5) 3.9 0.1333 (50) 0.6481 (9) 0.3687 (5) 4.4 (6) 0.7095 (26) 0.4022 (2) 0.3259 (1) 3.2 0.1183 (10) 0.6039 (2) 0.4313 (1) 3.1 C(6) 0.8235 (20) 0.5170 (6) 0.3066 (4) 2.5 -0.0684 (35) 0.5062 (8) 0.4138 (5) 2.9 C(7) 0.7779 (21) 0.5888 (6) 0.3572 (3) 2.3 -0.0110 (29) 0.4270 (8) 0.4481 (4) 2.1 C(8) 0.5361 (20) 0.6201 (6) 0.3194 (4) 2.2 0.2102 (32) 0.3982 (8) 0.4084 (4) 2.5 C(9) 0.3562 (15) 0.6744 (4) 0.3258 (3) 3.3 0.4032 (23) 0.3457 (5) 0.4064 (3) 2.7 C(10) 0.2688 (22) 0.5708 (7) 0.1895 (4) 2.9 0.3436 (40) 0.4475 (9) 0.2933 (5) 3.5 C(10) 0.2688 (22) 0.5708 (7) 0.1895 (4) 2.9 0.3436 (40) 0.4475 (9) 0.2933 (5) 3.5 C(10) 0.2688 (22) 0.5595 (5) 0.4162 (3) 2.0 0.1231 (25) 0.4442 (6) 0.4963 (3) 2.1 C(14) 0.8994 (20) 0.5418 (6) 0.4559 (4) 2.3 -0.0504 (2) 0.4546 (6) 0.2593 (4) 5.5 C(14) 0.8994 (20) 0.5418 (6) 0.4559 (4) 2.3 -0.0504 (2) 0.4546 (6) 0.5387 (3) 4.7 C(16) 0.8085 (19) 0.5159 (6) 0.5161 (3) 2.0 0.1029 (30) 0.4820 (8) 0.5306 (3) 4.7 C(16) 0.8085 (19) 0.5498 (5) 0.5529 (4) 3.2 0.1658 (30) 0.5602 (7) 0.5907 (4) 3.1 C(19) 0.4449 (37) 0.6986 (8) 0.5580 (4) 3.2 0.1658 (30) 0.5602 (7) 0.5907 (4) 3.1 C(19) 0.4449 (37) 0.6986 (8) 0.5581 (6) 0.5387 (3) 2.0 0.2010 (31) 0.4179 (8) 0.6164 (4) 2.4 C(21) 1.0674 (24) 0.3718 (6) 0.5387 (3) 2.0 0.2010 (31) 0.4179 (8) 0.6164 (4) 2.4 C(21) 1.0674 (24) 0.3718 (6) 0.5588 (4) 0.5588 (3) 2.0 0.2010 (31) 0.4179 (8) 0.6164 (4) 2.4 C(21) 1.0674 (24) 0.3718 (6) 0.5588 (4) 2.7 0.4701 (28) 0.3886 (20) 0.4390 (7) 0.1814 (4) 5.8 C(21) 1.0674 (24) 0.3718 (6) 0.5587 (4) 2.7 0.5996 (4) 2.7 0.4701 (28) 0.388 (7) 0.7216 (4) 3.6 C(21) 1.0674 (24) 0.3718 (6) 0.5587 (3) 2.2 0.3868 (20) 0.3070 (7) 0.1814 (4) 2.4 C(21) 0.988 (23) 0.417 (7) 0.162 (4) 2.3 0.243 (40) 0.6107 (10) 0.335 (6) 5.1 H(4b) 0.933 (25) 0.384 (7) 0.235 (4) 2.5 0.6426 (4) 3.5 0.449 (3) 0.349 (4) 0.448 (6) 0.4996 (6) 5.5 4 (4) 0.444 (4) 0.21 (10) 0.532 (5) 3.8 H(4b) 0.934 (29) 0.760 (8) 0.555 (5) 5.5 (5) 5.2 0.072 (45) 0.3                                                                                                                                                                                                                                                                            | N(1)   | 0.5979 (15) |            | 0.2734 (3) | 2.0                 | 0.1136 (26) | 0.4602 (6) | 0.3770 (3) | 2.3                 |
| C(4)         0.7095 (26)         0.3692 (7)         0.2470 (5)         3.9         0.1333 (50)         0.6481 (9)         0.3687 (5)         4.4           S(5)         0.7421 (6)         0.4022 (2)         0.3259 (1)         3.2         0.1183 (10)         0.6039 (2)         0.4313 (1)         3.1           C(6)         0.8235 (20)         0.5170 (6)         0.3066 (4)         2.5         -0.0684 (35)         0.5002 (8)         0.4138 (5)         2.9           C(7)         0.7779 (21)         0.5888 (6)         0.3572 (3)         2.3         -0.0110 (29)         0.4270 (8)         0.4481 (4)         2.1           C(8)         0.5361 (20)         0.6201 (6)         0.3194 (4)         2.2         0.210 (23)         0.3382 (8)         0.4488 (4)         2.2           C(10)         0.2688 (22)         0.5708 (7)         0.1895 (4)         2.9         0.3436 (40)         0.4475 (9)         0.2933 (5)         3.5           O(11)         0.2380 (18)         0.6497 (4)         0.1895 (4)         2.9         0.3436 (40)         0.4752 (6)         0.2597 (4)         5.3           O(12)         0.1382 (16)         0.5230 (5)         0.4162 (3)         2.0         0.1231 (25)         0.4426 (6)         0.2974 (3)         4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(2)   |             | 0.5171 (6) | 0.2256 (4) | 2.5                 | 0.2361 (34) | 0.5005 (8) | 0.3355 (4) | 2.7                 |
| \$\(\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fr                                                                                                                                                                                                                                                                                 | C(3)   | 0.5178 (23) | 0.4298 (7) | 0.2130 (4) | 3.4                 | 0.2345 (41) | 0.5862 (8) | 0.3322 (5) | 3.9                 |
| S(5) 0.7421 (6) 0.4022 (2) 0.3259 (1) 3.2 0.1183 (10) 0.6039 (2) 0.4313 (1) 3.1 C(6) 0.8235 (20) 0.5170 (6) 0.3066 (4) 2.5 -0.0684 (35) 0.5062 (8) 0.4181 (5) 2.1 C(7) 0.7779 (21) 0.5888 (6) 0.3572 (3) 2.3 -0.0110 (29) 0.4270 (8) 0.4481 (4) 2.1 C(8) 0.5361 (20) 0.6201 (6) 0.3194 (4) 2.2 0.2102 (32) 0.3982 (8) 0.4084 (4) 2.5 C(9) 0.3562 (15) 0.6744 (4) 0.3258 (3) 3.3 0.4032 (23) 0.3457 (5) 0.4064 (3) 2.7 C(10) 0.2688 (22) 0.5708 (7) 0.1895 (4) 2.9 0.3436 (40) 0.4475 (9) 0.2933 (5) 3.5 C(11) 0.2380 (18) 0.6497 (4) 0.1986 (3) 4.1 0.2619 (28) 0.3664 (6) 0.2974 (3) 4.3 C(12) 0.1382 (16) 0.5230 (5) 0.1499 (3) 4.1 0.4753 (34) 0.4762 (6) 0.2993 (4) 5.5 C(14) 0.8994 (20) 0.5418 (6) 0.4559 (4) 2.9 0.1334 (22) 0.4436 (6) 0.4963 (3) 2.1 C(14) 0.8994 (20) 0.5418 (6) 0.4559 (4) 2.3 -0.0504 (32) 0.4556 (9) 0.5348 (5) 2.9 C(15) 1.1432 (14) 0.5433 (5) 0.4429 (3) 3.8 -0.3134 (22) 0.4436 (8) 0.5350 (3) 4.7 C(16) 0.8085 (19) 0.5159 (6) 0.5161 (3) 2.0 0.1029 (30) 0.4820 (8) 0.5810 (4) 2.0 C(15) 0.4444 (20) 0.6498 (4) 0.5272 (3) 4.3 0.0701 (28) 0.6144 (6) 0.5532 (3) 4.2 C(19) 0.4449 (37) 0.6986 (8) 0.5681 (6) 6.8 0.2140 (53) 0.6974 (9) 0.5601 (6) 5.7 C(20) 0.8760 (19) 0.4244 (6) 0.5387 (3) 2.0 0.1031 (35) 0.6974 (9) 0.5601 (6) 5.7 C(20) 0.8760 (19) 0.4244 (6) 0.5387 (3) 2.0 0.2010 (31) 0.4179 (8) 0.6164 (4) 2.4 C(21) 1.0674 (24) 0.3718 (6) 0.5155 (4) 2.9 0.1381 (38) 0.3353 (8) 0.6175 (4) 2.8 S(22) 1.0817 (6) 0.3899 (4) 0.5584 (1) 2.7 0.3126 (10) 0.2857 (2) 0.6660 (1) 3.4 C(21) 0.7301 (16) 0.3899 (4) 0.5584 (3) 2.2 0.3868 (26) 0.4438 (6) 0.6547 (3) 2.2 0.7055 (4) 0.7030 (7) 0.1814 (4) 5.8 C(21) 0.7030 (16) 0.3899 (4) 0.5584 (4) 2.7 0.7055 (40) 0.690 (9) 0.345 (5) 3.4 C(21) 0.7031 (16) 0.3899 (4) 0.5585 (5) 0.6426 (4) 3.5 0.6499 (31) 0.3898 (7) 0.7216 (4) 3.6 C(21) 0.984 (22) 0.631 (6) 0.360 (4) 2.1 -0.192 (36) 0.380 (9) 0.451 (5) 2.4 C(11) 0.0529 (6) 0.285 (4) 2.1 -0.026 (38) 0.380 (9) 0.451 (5) 2.4 C(11) 0.0529 (6) 0.285 (4) 2.1 -0.026 (38) 0.380 (9) 0.451 (5) 2.4 C(11) 0.0529 (6) 0.285 (4) 2.1 -0.026 (38) 0.380 (9) 0.451 (5) 2.4 C(1                                                                                                                                                                                                                                                                            | C(4)   | 0.7095 (26) | 0.3692 (7) | 0.2470 (5) | 3.9                 | 0.1333 (50) | 0.6481 (9) | 0.3687 (5) | 4.4                 |
| C(6)         0.8235 (20)         0.5170 (6)         0.3066 (4)         2.5         -0.0684 (35)         0.5062 (8)         0.4188 (5)         2.9           C(7)         0.7779 (21)         0.5888 (6)         0.3572 (3)         2.3         -0.0110 (29)         0.4270 (8)         0.4481 (4)         2.5           C(8)         0.3561 (20)         0.6201 (6)         0.3194 (4)         2.2         0.2102 (32)         0.3982 (8)         0.4084 (4)         2.5           O(9)         0.3562 (15)         0.6744 (4)         0.3258 (3)         3.3         0.4032 (23)         0.3457 (5)         0.4064 (3)         2.7           C(10)         0.2688 (22)         0.5708 (7)         0.1895 (4)         2.9         0.3436 (40)         0.4475 (9)         0.2933 (5)         3.4           O(11)         0.2380 (18)         0.6497 (4)         0.1896 (3)         4.1         0.4753 (34)         0.4762 (6)         0.2934 (3)         4.3           O(12)         0.1382 (16)         0.5230 (5)         0.1462 (3)         2.0         0.1231 (25)         0.4442 (6)         0.4963 (3)         2.1           O(14)         0.8994 (20)         0.5418 (6)         0.4559 (4)         2.3         -0.0314 (20)         0.4556 (9)         0.5338 (5)         4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S(5)   | 0.7421 (6)  | 0.4022 (2) | 0.3259 (1) | 3.2                 | 0.1183 (10) | 0.6039 (2) |            | 3.1                 |
| C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(6)   | 0.8235 (20) | 0.5170 (6) | 0.3066 (4) | 2.5                 | -0.0684(35) | 0.5062 (8) | 0.4138 (5) | 2.9                 |
| C(8) 0.5361 (20) 0.6201 (6) 0.3194 (4) 2.2 0.2102 (32) 0.3982 (8) 0.4084 (4) 2.5 O(9) 0.3562 (15) 0.6744 (4) 0.3258 (3) 3.3 0.4032 (23) 0.3457 (5) 0.4064 (3) 2.7 O(10) 0.2688 (22) 0.5708 (7) 0.1895 (4) 2.9 0.3436 (40) 0.4475 (9) 0.2933 (5) 3.5 O(11) 0.2380 (18) 0.6497 (4) 0.1986 (3) 4.1 0.2619 (28) 0.3664 (6) 0.2974 (3) 4.3 O(12) 0.1382 (16) 0.5230 (5) 0.1499 (3) 4.1 0.4753 (34) 0.4762 (6) 0.2593 (4) 5.5 O(14) 0.8994 (20) 0.5418 (6) 0.4559 (4) 2.3 -0.0504 (32) 0.4542 (6) 0.4563 (3) 2.1 O(15) 1.1432 (14) 0.5433 (5) 0.4429 (3) 3.8 -0.3134 (22) 0.4436 (8) 0.5350 (3) 4.7 O(16) 0.8085 (19) 0.5159 (6) 0.5161 (3) 2.0 0.1029 (30) 0.4820 (8) 0.5810 (4) 2.0 O(18) 0.6715 (19) 0.5649 (5) 0.5529 (4) 3.2 0.1658 (30) 0.5602 (7) 0.5907 (4) 3.1 O(18) 0.6144 (20) 0.6498 (4) 0.5272 (3) 4.3 0.0701 (28) 0.6144 (6) 0.5532 (3) 4.2 C(19) 0.4449 (37) 0.6986 (8) 0.5681 (6) 6.8 0.2140 (53) 0.6974 (9) 0.5601 (6) 5.7 O(20) 0.8760 (19) 0.4244 (6) 0.5387 (3) 2.0 0.2010 (31) 0.4179 (8) 0.6164 (4) 2.4 C(21) 1.0674 (24) 0.3718 (6) 0.5155 (4) 2.9 0.1381 (38) 0.3353 (8) 0.6175 (4) 2.8 S(22) 1.0817 (6) 0.2709 (2) 0.5551 (1) 2.7 0.3126 (10) 0.2857 (2) 0.6660 (1) 3.4 O(23) 0.8208 (20) 0.3072 (7) 0.5996 (4) 2.7 0.4701 (38) 0.3805 (9) 0.6836 (5) 3.4 O(23) 0.4202 (3) 0.417 (7) 0.162 (4) 2.3 0.4804 (31) 0.4030 (7) 0.1814 (4) 5.8 O(23) 0.492 (23) 0.417 (7) 0.162 (4) 2.3 0.4804 (31) 0.4030 (7) 0.1814 (4) 5.8 O(23) 0.492 (23) 0.417 (7) 0.162 (4) 2.3 0.2806 (30) 0.3806 (9) 0.385 (5) 2.8 O(30) 0.394 (29) 0.760 (8) 0.555 (5) 5.2 0.072 (44) 0.696 (10) 0.375 (6) 5.1 O(10) 0.528 (23) 0.702 (7) 0.0596 (4) 2.1 -0.0280 (38) 0.516 (9) 0.395 (5) 2.8 O(4) 0.0591 (9) 0.394 (29) 0.760 (8) 0.555 (5) 5.2 0.072 (44) 0.721 (10) 0.532 (5) 4.5 O(10) 0.298 (23) 0.702 (7) 0.612 (4) 2.2 0.341 (47) 0.448 (10) 0.499 (5) 5.5 O(4) 0.690 (9) 0.345 (5) 3.8 O(4) 0.298 (28) 0.648 (8) 0.5515 (5) 5.2 0.072 (45) 0.721 (10) 0.593 (6) 5.5 O(4) 0.099 (9) 0.345 (5) 3.4 O(4) 0.099 (9) 0.345 (5) 3.4 O(4) 0.099 (9) 0.395 (5) 2.8 O(4) 0.099 (9) 0.395 (5) 2.8 O(4) 0.099 (9) 0.395 (5) 2.8 O(4) 0.099                                                                                                                                                                                                                                                                            | C(7)   | 0.7779 (21) | 0.5888 (6) | 0.3572 (3) | 2.3                 | -0.0110(29) | 0.4270 (8) | • ,        |                     |
| O(9)         0.3562 (15)         0.6744 (4)         0.3258 (3)         3.3         0.4032 (23)         0.3457 (5)         0.4064 (3)         2.7           C(10)         0.2688 (22)         0.5708 (7)         0.1895 (4)         2.9         0.3436 (40)         0.4475 (9)         0.2933 (5)         3.5           O(11)         0.2380 (18)         0.6497 (4)         0.1986 (3)         4.1         0.2619 (28)         0.3664 (6)         0.2574 (3)         4.3           O(12)         0.1382 (16)         0.5230 (5)         0.1499 (3)         4.1         0.4753 (34)         0.462 (6)         0.2593 (4)         5.3           N(13)         0.7118 (15)         0.5595 (5)         0.4162 (3)         2.0         0.1231 (25)         0.4442 (6)         0.4963 (3)         2.1           C(14)         0.8994 (20)         0.5418 (6)         0.4559 (4)         2.3         -0.0504 (32)         0.4556 (9)         0.5348 (5)         2.9           O(15)         1.1432 (14)         0.5433 (5)         0.4429 (3)         3.8         -0.3134 (22)         0.4436 (8)         0.5318 (5)         2.9           O(15)         1.1432 (14)         0.5433 (5)         0.4429 (3)         3.2         0.1626 (3)         0.6044 (8)         0.5532 (4)         3.2         0.1626 (3)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(8)   | 0.5361 (20) | 0.6201 (6) | 0.3194 (4) | 2.2                 | 0.2102 (32) | 0.3982 (8) | 0.4084 (4) |                     |
| $ \begin{array}{c} C(10) & 0.2688 \ (22) & 0.5708 \ (7) & 0.1895 \ (4) & 2.9 \\ O(11) & 0.2380 \ (18) & 0.6497 \ (4) & 0.1986 \ (3) & 4.1 \\ O(2619 \ (28) & 0.3664 \ (6) & 0.2974 \ (3) & 4.3 \\ O(12) & 0.1382 \ (16) & 0.5230 \ (5) & 0.1499 \ (3) & 4.1 \\ O(18) & 0.7118 \ (15) & 0.5595 \ (5) & 0.14162 \ (3) & 2.0 \\ O(15) & 0.1381 \ (15) & 0.5595 \ (5) & 0.4162 \ (3) & 2.0 \\ O(15) & 1.1432 \ (14) & 0.5433 \ (5) & 0.4429 \ (3) & 3.8 \\ O(15) & 1.1432 \ (14) & 0.5433 \ (5) & 0.4429 \ (3) & 3.8 \\ O(15) & 1.1432 \ (14) & 0.5433 \ (5) & 0.4429 \ (3) & 3.8 \\ O(15) & 0.159 \ (6) & 0.5161 \ (3) \ 2.0 \\ O(15) & 0.16715 \ (19) & 0.5649 \ (5) & 0.55529 \ (4) \ 3.2 \\ O(16) & 0.8085 \ (19) & 0.5159 \ (6) & 0.5161 \ (3) \ 2.0 \\ O(17) & 0.6715 \ (19) & 0.5649 \ (5) & 0.5529 \ (4) \ 3.2 \\ O(18) & 0.6214 \ (20) & 0.6498 \ (4) & 0.5272 \ (3) \ 4.3 \\ O(19) & 0.4444 \ (37) & 0.6986 \ (8) & 0.5681 \ (6) \ 6.8 \\ O.2140 \ (33) & 0.6974 \ (9) & 0.5601 \ (6) \ 5.7 \\ O(20) & 0.8760 \ (19) & 0.4244 \ (6) & 0.5387 \ (3) \ 2.0 \\ O(20) & 0.8760 \ (19) & 0.4244 \ (6) & 0.5387 \ (3) \ 2.0 \\ O(22) & 1.0817 \ (6) & 0.2709 \ (2) & 0.5541 \ (1) \ 2.7 \\ O(3126 \ (10) \ 0.2857 \ (2) & 0.6660 \ (1) \ 3.4 \\ O(23) & 0.8208 \ (20) & 0.3072 \ (7) & 0.5996 \ (4) \ 2.7 \\ O(3130 \ 0.438 \ (3) & 0.3808 \ (7) & 0.7216 \ (4) \ 3.6 \\ O(40) & 0.933 \ (25) & 0.384 \ (7) & 0.235 \ (4) \ 2.7 \\ O(80) & 0.984 \ (23) & 0.631 \ (6) & 0.285 \ (4) \ 2.1 \\ O(9) & 0.984 \ (23) & 0.631 \ (6) & 0.285 \ (4) \ 2.1 \\ O(9) & 0.984 \ (23) & 0.631 \ (6) & 0.285 \ (4) \ 2.1 \\ O(12) & 0.098 \ (23) & 0.070 \ (2) & 0.556 \ (6) & 0.285 \ (4) \ 2.1 \\ O(13) & 0.098 \ (28) & 0.560 \ (6) \ 0.025 \ (7) \ 0.660 \ (5) \ 3.4 \\ O(11) & 0.129 \ (23) \ 0.341 \ (47) \ 0.448 \ (40) \ 0.690 \ (9) \ 0.345 \ (5) \ 3.8 \\ O(17) & 0.599 \ (6) \ 0.285 \ (4) \ 2.1 \\ O(19) & 0.984 \ (23) \ 0.617 \ (7) \ 0.162 \ (4) \ 2.3 \\ O(19) & 0.245 \ (4) \ 2.7 \\ O(10) & 0.3657 \ (11) \ 0.2619 \ (0.290 \ (10) \ 0.375 \ (6) \ 0.444 \ (10) \ 0.444 \ (10) \ 0.444 \ (10) \ 0.444 \ (10) \ 0.444 \ (10) \ 0.444 \ (10) \ 0.444 \ (10) \ 0.444 \ $                                                                                                                                                                                                                                | O(9)   | 0.3562 (15) | 0.6744 (4) | 0.3258 (3) | 3.3                 | 0.4032 (23) | 0.3457 (5) |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(10)  | 0.2688 (22) | 0.5708 (7) | 0.1895 (4) | 2.9                 | , ,         |            | ` '        |                     |
| O(12)         0.1382 (16)         0.5230 (5)         0.1499 (3)         4.1         0.4753 (34)         0.4762 (6)         0.2593 (4)         5.5           N(13)         0.7118 (15)         0.5595 (5)         0.4162 (3)         2.0         0.1231 (25)         0.4442 (6)         0.4963 (3)         2.1           C(14)         0.8994 (20)         0.5418 (6)         0.4559 (4)         2.3         -0.0504 (32)         0.4556 (9)         0.5348 (5)         2.9           O(15)         1.1432 (14)         0.5433 (5)         0.4429 (3)         3.8         -0.3134 (22)         0.4436 (8)         0.5350 (3)         4.7           C(16)         0.8085 (19)         0.5159 (6)         0.5161 (3)         2.0         0.1029 (30)         0.4820 (8)         0.5810 (4)         2.0           N(17)         0.6715 (19)         0.5649 (5)         0.5529 (4)         3.2         0.1658 (30)         0.5602 (7)         0.5997 (4)         3.1           O(18)         0.6214 (20)         0.6498 (4)         0.5272 (3)         4.3         0.0701 (28)         0.6144 (6)         0.5532 (3)         4.2           C(19)         0.4449 (37)         0.6986 (8)         0.5681 (6)         6.8         0.2140 (53)         0.6974 (9)         0.5601 (6)         5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O(11)  | 0.2380 (18) | 0.6497 (4) | 0.1986 (3) |                     |             |            |            |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O(12)  |             | 0.5230 (5) |            |                     |             |            |            |                     |
| C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N(13)  | 0.7118 (15) | 0.5595 (5) |            |                     |             |            | , ,        |                     |
| O(15)         1.1432 (14)         0.5433 (5)         0.4429 (3)         3.8         -0.3134 (22)         0.4436 (8)         0.5350 (3)         4.7           C(16)         0.8085 (19)         0.5159 (6)         0.5161 (3)         2.0         0.1029 (30)         0.4820 (8)         0.5810 (4)         2.0           N(17)         0.6715 (19)         0.5649 (5)         0.5529 (4)         3.2         0.1658 (30)         0.5602 (7)         0.5907 (4)         3.1           O(18)         0.6214 (20)         0.6498 (4)         0.5272 (3)         4.3         0.0701 (28)         0.6144 (6)         0.5532 (3)         4.2           C(19)         0.4449 (37)         0.6986 (8)         0.5681 (6)         6.8         0.2140 (53)         0.6974 (9)         0.5601 (6)         5.7           C(20)         0.8760 (19)         0.4244 (6)         0.5387 (3)         2.0         0.2010 (31)         0.4179 (8)         0.6164 (4)         2.4           C(21)         1.0674 (24)         0.3718 (6)         0.5155 (4)         2.9         0.1381 (38)         0.3353 (8)         0.6175 (4)         2.8           S(22)         1.0817 (6)         0.2709 (2)         0.5541 (1)         2.7         0.3126 (10)         0.2857 (2)         0.6660 (1)         3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 0.8994 (20) |            |            |                     |             |            |            |                     |
| C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |             | , ,        |            |                     |             |            | , ,        |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | ` '        |            |                     | , ,         |            |            |                     |
| $\begin{array}{c} O(18) & 0.6214 \ (20) & 0.6498 \ (4) & 0.5272 \ (3) & 4.3 \\ C(19) & 0.4449 \ (37) & 0.6986 \ (8) & 0.5681 \ (6) & 6.8 \\ C(20) & 0.8760 \ (19) & 0.4244 \ (6) & 0.5387 \ (3) & 2.0 \\ C(21) & 1.0674 \ (24) & 0.3718 \ (6) & 0.5155 \ (4) & 2.9 \\ C(22) & 1.0817 \ (6) & 0.2709 \ (2) & 0.5541 \ (1) & 2.7 \\ C(23) & 0.8208 \ (20) & 0.3072 \ (7) & 0.5996 \ (4) & 2.7 \\ C(23) & 0.8208 \ (20) & 0.3072 \ (7) & 0.5996 \ (4) & 2.7 \\ C(24) & 0.7330 \ (16) & 0.3899 \ (4) & 0.5878 \ (3) & 2.2 \\ C(25) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(26) & 0.8408 \ (20) & 0.3072 \ (7) & 0.5948 \ (3) \ 3.2 \\ C(27) & 0.8208 \ (20) & 0.3072 \ (7) & 0.5996 \ (4) \ 2.7 \\ C(28) & 0.8208 \ (20) & 0.3072 \ (7) & 0.5996 \ (4) \ 2.7 \\ C(29) & 0.8868 \ (26) & 0.4438 \ (6) & 0.6547 \ (3) \ 2.2 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) & 0.1814 \ (4) \ 5.8 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) & 0.1814 \ (4) \ 5.8 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) & 0.1814 \ (4) \ 5.8 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) & 0.1814 \ (4) \ 5.8 \\ C(29) & 0.345 \ (5) \ 3.8 \\ C(29) & 0.341 \ (7) & 0.162 \ (4) \ 2.3 \\ C(29) & 0.243 \ (40) \ 0.617 \ (10) \ 0.300 \ (5) \ 4.3 \\ C(29) & 0.345 \ (5) \ 3.8 \\ C(29) & 0.341 \ (40) \ 0.617 \ (10) \ 0.300 \ (5) \ 4.3 \\ C(29) & 0.341 \ (47) \ 0.448 \ (10) \ 0.499 \ (6) \ 5.5 \\ C(29) & 0.341 \ (47) \ 0.448 \ (10) \ 0.499 \ (6) \ 5.5 \\ C(29) & 0.341 \ (47) \ 0.448 \ (10) \ 0.499 \ (6) \ 5.5 \\ C(29) & 0.298 \ (28) \ 0.648 \ (8) \ 0.571 \ (5) \ 4.4 \\ C(21) & 0.489 \ (38) \ 0.494 \ (9) \ 0.657 \ (5) \ 3.4 \\ C(21) & 0.489 \ (38) \ 0.494 \ (9) \ 0.657 \ (5) \ 3.4 \\ C(29) & 0.489 \ (38) \ 0.494 \ (9) \ 0.657 \ (5) \ 3.4 \\ C(29) & 0.574 \ (6) \ 0.295 \ (7) \ 0.660 \ (5) \ 3.4 \\ C(29) & 0.489 \ (38) \ 0.494 \ (9) \ 0.657 \ (5) \ 3.4 \\ C(29) & 0.574 \ (6) \ 0.489 \ (38) \ 0.494 \ (9) \ $                                                                                                                                                                                                                             |        |             | ` ′        | ` '        |                     | , ,         | ` '        | , ,        |                     |
| $\begin{array}{c} C(19) \\ C(19) \\ C(20) \\ C(21) \\ C(21) \\ C(21) \\ C(21) \\ C(21) \\ C(21) \\ C(22) \\ C(21) \\ C(22) \\ C(21) \\ C(22) \\ C(21) \\ C(23) \\ C(24) \\ C(25) \\ C(26) \\ C(27) \\ C(27) \\ C(28) \\ C(28) \\ C(29) \\ C(29) \\ C(29) \\ C(21) \\ C(21) \\ C(21) \\ C(21) \\ C(21) \\ C(21) \\ C(22) \\ C(21) \\ C(22) \\ C(21) \\ C(22) \\ C(21) \\ C(23) \\ C(22) \\ C(21) \\ C(24) \\ C(24) \\ C(24) \\ C(24) \\ C(25) \\ C(27) \\ C(29) \\ C(21) \\$ |        |             | ` '        | , ,        |                     |             | ` '        |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            |            |                     |             |            |            |                     |
| $\begin{array}{c} C(21) & 1.0674 \ (24) & 0.3718 \ (6) & 0.5155 \ (4) & 2.9 \\ S(22) & 1.0817 \ (6) & 0.2709 \ (2) & 0.5541 \ (1) & 2.7 \\ C(23) & 0.8208 \ (20) & 0.3072 \ (7) & 0.5996 \ (4) & 2.7 \\ C(24) & 0.7330 \ (16) & 0.3899 \ (4) & 0.5878 \ (3) & 2.2 \\ C(25) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) & 3.5 \\ C(26) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) & 3.5 \\ C(27) & 0.8264 \ (27) & 0.311 \ (27) & 0.3898 \ (7) & 0.7216 \ (4) & 3.6 \\ C(28) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) & 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) & 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) & 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) & 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2558 \ (5) & 0.6426 \ (4) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2619 \ (2) \ 0.2102 \ (1) \ 3.5 \\ C(29) & 0.7103 \ (18) & 0.2619 \ (2) \ 0.2102 \ (1) \ 3.5 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) \ 0.1814 \ (4) \ 5.8 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) \ 0.1814 \ (4) \ 5.8 \\ C(29) & 0.8864 \ (31) & 0.4030 \ (7) \ 0.1814 \ (4) \ 5.8 \\ C(29) & 0.384 \ (7) \ 0.245 \ (4) \ 2.7 \ -0.055 \ (40) \ 0.690 \ (9) \ 0.345 \ (5) \ 3.8 \\ C(29) & 0.384 \ (7) \ 0.235 \ (4) \ 2.6 \ 0.296 \ (44) \ 0.696 \ (10) \ 0.375 \ (6) \ 5.1 \\ C(29) & 0.8864 \ (21) \ 0.298 \ (23) \ 0.631 \ (6) \ 0.360 \ (4) \ 2.1 \ -0.280 \ (38) \ 0.516 \ (9) \ 0.395 \ (5) \ 2.8 \\ C(29) & 0.760 \ (8) \ 0.555 \ (5) \ 5.2 \ 0.072 \ (45) \ 0.721 \ (10) \ 0.532 \ (5) \ 4.5 \\ C(29) & 0.760 \ (8) \ 0.555 \ (5) \ 5.2 \ 0.072 \ (45) \ 0.721 \ (10) \ 0.582 \ (6) \ 5.1 \\ C(29) & 0.376 \ (6) \ 0.477 \ (4) \ 2.1 \ -0.008 \ (43) \ 0.298 \ (10) \ 0.593 \ (6) \ 4.7 \\ C(29) & 0.376 \ (6) \ 0.477 \ (4) \ 2.1 \ -0.008 \ (43) \ 0.298 \ (10) \ 0.593 \ (6) \ 4.7 \\ C(29) & 0.376 \ (6) \ 0.477 $                                                                                                                                                                                                                                   |        |             |            |            |                     |             | ` '        |            |                     |
| S(22)       1.0817 (6)       0.2709 (2)       0.5541 (1)       2.7       0.3126 (10)       0.2857 (2)       0.6660 (1)       3.4         C(23)       0.8208 (20)       0.3072 (7)       0.5996 (4)       2.7       0.4701 (38)       0.3805 (9)       0.6836 (5)       3.4         N(24)       0.7330 (16)       0.3899 (4)       0.5878 (3)       2.2       0.3868 (26)       0.4438 (6)       0.6547 (3)       2.2         N(25)       0.7103 (18)       0.2558 (5)       0.6426 (4)       3.5       0.6499 (31)       0.3898 (7)       0.7216 (4)       3.6         C1       0.3657 (11)       0.2619 (2)       0.2102 (1)       3.5         O(W)       0.8864 (31)       0.4030 (7)       0.1814 (4)       5.8         H(3)       0.492 (23)       0.417 (7)       0.162 (4)       2.3       0.243 (40)       0.617 (10)       0.300 (5)       4.3         H(4a)       0.646 (24)       0.305 (7)       0.245 (4)       2.7       -0.055 (40)       0.690 (9)       0.345 (5)       3.8         H(4b)       0.933 (25)       0.384 (7)       0.235 (4)       2.6       0.296 (44)       0.696 (10)       0.375 (6)       5.1         H(7)       0.984 (23)       0.631 (6)       0.360 (4)       2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |             |            |            |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | ` '        |            |                     | ` ′         |            | ` '        |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            |            |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | , ,        |            |                     |             |            | • /        |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            |            |                     |             |            |            |                     |
| O(W) H(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |             | (0)        | 0.0120(1)  | 0.0                 |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            |            |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 0.492 (23)  | 0.417 (7)  | 0.162 (4)  | 2.3                 | • •         | . ,        |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | , ,        |            |                     | , ,         | ` ′        |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | ` ′        |            |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            |            |                     | , ,         | , ,        | • •        |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            | ` ,        |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 31,501 (20) | 0.001 (0)  | 0.500 (1)  | 2.1                 | ` ,         |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | -0.031 (26) | 0.559 (7)  | 0.131 (5)  | 3.0                 | 0.547 (45)  | 0.320 (11) | 0.203 (0)  | 0.0                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | ` '         |            |            |                     | 0.341 (47)  | 0.448 (10) | 0.499 (6)  | 5.5                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | • /        |            |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |            |            |                     |             |            |            |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             | ` '        |            |                     |             |            |            |                     |
| H(24) 0.489 (38) 0.494 (9) 0.657 (5) 3.4 H(25a) 0.576 (27) 0.295 (7) 0.660 (5) 3.4 0.575 (49) 0.432 (11) 0.744 (6) 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            | ` '        |                     |             |            |            |                     |
| H(25a) 0.576 (27) 0.295 (7) 0.660 (5) 3.4 0.575 (49) 0.432 (11) 0.744 (6) 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | (22)        | 1.5,5 (0)  | 3.177 (4)  | <b>~</b>            | , ,         |            |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 0.576 (27)  | 0.295 (7)  | 0.660 (5)  | 3.4                 | , ,         |            |            |                     |
| () 0.51.2 (a) 0.51.2 (b) 0.741 (4) 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |            |                     |             |            |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n(230) | 0.841 (28)  | 0.238 (8)  | 0.672 (3)  | 5.2                 | 0.708 (34)  | 0.342 (8)  | 0.741 (4)  | 2.4                 |

$$B_{\text{eq}} = \frac{4}{3} \left( \frac{B_{11}}{a^{*2}} + \frac{B_{22}}{b^{*2}} + \frac{B_{33}}{c^{*2}} \right)$$
 for non-hydrogen atoms.

3542 Vol. 34 (1986)

TABLE III. Bond Lengths (Å) and Bond Angles (°) with the Estimated Standard Deviations in Parentheses

|                            | CZX                      | CZX-HCl    |                     | CZX       | CZX-HCl   |
|----------------------------|--------------------------|------------|---------------------|-----------|-----------|
| a) Bond lengths (Å)        |                          |            |                     | #13.32H   |           |
| N(1)-C(2)                  | 1.387 (13)               | 1.415 (20) | C(3)-H(3)           | 1.15 (11) | 1.01 (18) |
| N(1)-C(6)                  | 1,474 (13)               | 1.490 (20) | C(4)-H(4a)          | 1.01 (12) | 1.15 (19) |
| N(1)-C(8)                  | 1.406 (12)               | 1.370 (19) | C(4)-H(4b)          | 1.16 (12) | 1.07 (20) |
| C(2)-C(3)                  | 1.349 (15)               | 1.351 (24) | C(6)-H(6)           | 1.11 (11) | 1.11 (17) |
| C(2)– $C(10)$              | 1.500 (15)               | 1.503 (24) | C(7)-H(7)           | 1.20 (11) | 1.11 (16) |
| C(3)-C(4)                  | 1.511 (17)               | 1.468 (29) | O(11)–H(11)         | ` ′       | 1.19 (23) |
| C(4)-S(5)                  | 1.829 (13)               | 1.847 (23) | O(12)-H(12)         | 1.08 (13) | · ´       |
| S(5)-C(6)                  | 1.804 (10)               | 1.820 (17) | N(13)-H(13)         | 0.89 (11) | 1.00 (22) |
| C(6)–C(7)                  | 1.566 (14)               | 1.581 (21) | C(19)-H(19a)        | 1.07 (12) | 0.89 (20) |
| C(7)-C(8)                  | 1.535 (14)               | 1.550 (20) | C(19)-H(19b)        | 0.99 (14) | 0.96 (21) |
| C(7)-N(13)                 | 1.422 (13)               | 1.476 (18) | C(19)-H(19c)        | 1.05 (14) | 0.92 (19) |
| C(8)-O(9)                  | 1.209 (12)               | 1.208 (18) | C(21)– $H(21)$      | 0.97 (11) | 1.11 (20) |
| C(10)-O(11)                | 1.199 (14)               | 1.333 (22) | N(24)-H(24)         | 0.57 (11) | 0.92 (17) |
| C(10)-O(11)<br>C(10)-O(12) | 1.304 (13)               | 1.195 (24) | N(25)-H(25a)        | 0.97 (13) | 0.96 (22) |
| N(13)C(14)                 | 1.309 (12)               | 1.328 (18) | N(25)–H(25b)        | 0.95 (14) | 0.96 (15) |
| C(14)–O(15)                | 1.241 (12)               | 1.215 (19) | 14(23)-11(230)      | 0.75 (14) | 0.70 (13) |
| C(14)–C(16)                | 1.465 (13)               | 1.502 (20) |                     |           |           |
| C(14)-C(16)<br>C(16)-N(17) | 1.289 (13)               | 1.291 (19) |                     |           |           |
|                            |                          | 1.467 (20) |                     |           |           |
| C(16)–C(20)                | 1.486 (13)               | 1.407 (20) |                     |           |           |
| N(17)-O(18)                | 1.407 (14)<br>1.455 (21) |            |                     |           |           |
| O(18)–C(19)                | , ,                      | 1.473 (28) |                     |           |           |
| C(20)-C(21)                | 1.333 (15)               | 1.331 (22) |                     |           |           |
| C(20)-N(24)                | 1.398 (12)               | 1.405 (19) |                     |           |           |
| C(21)-S(22)                | 1.728 (12)               | 1.730 (18) |                     |           |           |
| S(22)–C(23)                | 1.727 (10)               | 1.724 (18) |                     |           |           |
| C(23)–N(24)                | 1.330 (13)               | 1.326 (21) |                     |           |           |
| C(23)-N(25)                | 1.341 (13)               | 1.331 (23) |                     |           |           |
| b) Bond angles (°)         |                          |            |                     |           |           |
| C(2)-N(1)-C(6)             | 123.4 (8)                | 122.9 (12) | C(2)-C(3)-H(3)      | 110 (6)   | 122 (10)  |
| C(2)-N(1)-C(8)             | 138.2 (8)                | 133.9 (13) | C(4)-C(3)-H(3)      | 117 (6)   | 107 (10)  |
| C(6)-N(1)-C(8)             | 94.1 (7)                 | 96.0 (11)  | C(3)-C(4)-H(4a)     | 110 (7)   | 112 (9)   |
| N(1)-C(2)-C(3)             | 120.1 (9)                | 119.9 (15) | C(3)-C(4)-H(4b)     | 112 (6)   | 111 (11)  |
| N(1)-C(2)-C(10)            | 118.7 (9)                | 119.7 (13) | S(5)-C(4)-H(4a)     | 109 (7)   | 120 (9)   |
| C(3)-C(2)-C(10)            | 121.3 (10)               | 120.3 (15) | S(5)-C(4)-H(4b)     | 95 (6)    | 98 (11)   |
| C(2)-C(3)-C(4)             | 125.6 (10)               | 128.1 (18) | H(4a)-C(4)-H(4b)    | 118 (9)   | 100 (14)  |
| C(3)-C(4)-S(5)             | 112.2 (9)                | 113.1 (15) | N(1)-C(6)-H(6)      | 113 (6)   | 104 (9)   |
| C(4)-S(5)-C(6)             | 92.5 (5)                 | 95.3 (9)   | S(5)-C(6)-H(6)      | 117 (6)   | 114 (9)   |
| N(1)-C(6)-S(5)             | 110.2 (7)                | 109.0 (10) | C(7)-C(6)-H(6)      | 110 (6)   | 122 (9)   |
| N(1)-C(6)-C(7)             | 88.1 (7)                 | 85.7 (11)  | C(6)-C(7)-H(7)      | 106 (5)   | 116 (8)   |
| S(5)-C(6)-C(7)             | 116.1 (7)                | 115.6 (11) | C(8)-C(7)-H(7)      | 122 (5)   | 110 (8)   |
| C(6)-C(7)-C(8)             | 85.7 (7)                 | 85.6 (10)  | N(13)-C(7)-H(7)     | 108 (5)   | 111 (8)   |
| C(6)-C(7)-N(13)            | 119.2 (8)                | 117.0 (11) | C(10)–O(11)–H(11)   |           | 111 (11)  |
| C(8)-C(7)-N(13)            | 114.8 (8)                | 114.1 (11) | C(10)-O(12)-H(12)   | 113 (7)   |           |
| N(1)-C(8)-C(7)             | 91.8 (7)                 | 91.1 (11)  | C(7)-N(13)-H(13)    | 113 (7)   | 119 (12)  |
| N(1)-C(8)-O(9)             | 132.8 (9)                | 133.8 (14) | C(14)-N(13)-H(13)   | 126 (7)   | 122 (12)  |
| C(7)-C(8)-O(9)             | 135.4 (9)                | 134.9 (13) | O(18)-C(19)-H(19a)  | 111 (6)   | 99 (13)   |
| C(2)-C(10)-O(11)           | 120.9 (10)               | 112.0 (15) | O(18)C(19)-H(19b)   | 115 (8)   | 97 (12)   |
| C(2)- $C(10)$ - $O(12)$    | 113.5 (9)                | 123.4 (17) | O(18)-C(19)-H(19c)  | 96 (8)    | 117 (12)  |
| O(11)-C(10)-O(12)          | 125.6 (10)               | 124.6 (17) | H(19a)-C(19)-H(19b) | 110 (10)  | 103 (18)  |
| C(7)-N(13)-C(14)           | 121.5 (8)                | 118.9 (11) | H(19a)-C(19)-H(19c) | 104 (10)  | 125 (18)  |
| N(13)-C(14)-O(15)          | 121.9 (9)                | 124.8 (14) | H(19b)-C(19)-H(19c) | 120 (11)  | 112 (17)  |
| N(13)-C(14)-C(16)          | 116.9 (8)                | 115.2 (12) | C(20)-C(21)-H(21)   | 129 (6)   | 129 (10)  |
| O(15)-C(14)-C(16)          | 121.1 (9)                | 120.0 (13) | S(22)-C(21)-H(21)   | 119 (6)   | 120 (10)  |

| TABLE III. (c | continued) |
|---------------|------------|
|---------------|------------|

|                   | CZX        | CZX-HCl    |                     | CZX      | CZX-HCl  |
|-------------------|------------|------------|---------------------|----------|----------|
| C(14)-C(16)-N(17) | 126.5 (9)  | 122.6 (13) | C(20)-N(24)-H(24)   |          | 127 (11) |
| C(14)-C(16)-C(20) | 118.7 (8)  | 120.5 (12) | C(23)-N(24)-H(24)   |          | 117 (11) |
| N(17)-C(16)-C(20) | 114.8 (9)  | 116.9 (13) | C(23)-N(25)-H(25a)  | 103 (8)  | 110 (13) |
| C(16)-N(17)-O(18) | 109.8 (9)  | 111.2 (13) | C(23)-N(25)-H(25b)  | 112 (8)  | 121 (9)  |
| N(17)-O(18)-C(19) | 107.2 (10) | 107.8 (14) | H(25a)-N(25)-H(25b) | 111 (ÌI) | 107 (16) |
| C(16)-C(20)-C(21) | 124.4 (9)  | 128.3 (14) |                     | ` ,      | ` ,      |
| C(16)-C(20)-N(24) | 119.0 (8)  | 118.4 (12) |                     |          |          |
| C(21)-C(20)-N(24) | 116.6 (9)  | 113.4 (13) |                     |          |          |
| C(20)-C(21)-S(22) | 110.2 (8)  | 111.0 (13) |                     |          |          |
| C(21)-S(22)-C(23) | 89.4 (5)   | 90.9 (8)   |                     |          |          |
| S(22)-C(23)-N(24) | 114.6 (7)  | 111.3 (12) |                     |          |          |
| S(22)-C(23)-N(25) | 123.1 (8)  | 124.7 (13) |                     |          |          |
| N(24)-C(23)-N(25) | 122.2 (9)  | 124.0 (16) |                     |          |          |
| C(20)-N(24)-C(23) | 109.1 (8)  | 113.5 (13) |                     |          |          |

# **Results and Discussion**

The final atomic coordinates and isotropic thermal parameters are given in Table II. The bond lengths and angles are listed in Table III, and selected torsion angles in CZX and CZX-HCl as well as RU25159 and CMX A and B are listed in Table IV.

#### **Molecular Conformation**

The molecular conformations of CZX and CZX-HCl drawn with the ORTEP II program<sup>8)</sup> are presented in Fig. 2 and those of RU25159 and CMX A and B in Fig. 3. The conformational features of these molecules are similar except for different rotation angles around the C(14)–C(16) bond, where the torsion angles of N(13)–C(14)–C(16)–C(20) are  $117^{\circ}$ ,  $-92^{\circ}$ ,  $85^{\circ}$ ,  $-124^{\circ}$  and  $-62^{\circ}$  for CZX, CZX-HCl, RU25159 and CMX A and B, respectively as shown in Table IV.

# The C(7) Side Chain

In both CZX and CZX-HCl molecules, the aminothiazole ring is of an amino- rather

TABLE IV. Selected Torsion Angles (°)

|                         | CZX  | CZX-HCI | RU25159      | CMX A | CMX B |
|-------------------------|------|---------|--------------|-------|-------|
| C(6)-C(7)-N(13)-C(14)   | 89   | 93      | 120          | 74    | 88    |
| C(8)-C(7)-N(13)-C(14)   | -171 | -169    | -151         | -174  | -178  |
| C(7)-N(13)-C(14)-O(15)  | 5    | 9       | 0            | -2    | -2    |
| C(7)-N(13)-C(14)-C(16)  | 177  | -174    | 175          | 177   | 175   |
| N(13)-C(14)-C(16)-N(17) | -63  | 85      | -106         | 60    | 110   |
| N(13)-C(14)-C(16)-C(20) | 117  | -92     | 85           | -124  | -62   |
| O(15)-C(14)-C(16)-N(17) | 120  | -98     | 68           | -121  | -72   |
| O(15)-C(14)-C(16)-C(20) | -60  | 85      | -101         | 56    | 116   |
| C(14)-C(16)-N(17)-O(18) | -1   | 1       | 16           | -2    | 1     |
| C(20)-C(16)-N(17)-O(18) | 180  | 178     | <b>- 175</b> | 178   | 174   |
| C(16)-N(17)-O(18)-C(19) | 175  | -165    | -176         | -168  | 173   |
| C(14)-C(16)-C(20)-C(21) | 18   | -11     | -3           | -7    | -15   |
| C(14)-C(16)-C(20)-N(24) | -163 | 169     | 176          | 171   | 165   |
| N(17)-C(16)-C(20)-C(21) | -163 | 172     | -173         | 170   | 172   |
| N(17)-C(16)-C(20)-N(24) | 17   | -8      | 6            | -12   | -8    |

3544 Vol. 34 (1986)



Fig. 2. Stereographic Molecular Conformations of CZX and CZX-HCl after a Least-Squares Fitting of Atoms C(2), C(6) and C(8)

a) CZX, b) CZX-HCl.

than imino-type, and participates in intermolecular hydrogen-bond formation.

In CZX, as shown in Fig. 4a, N(25) donates a hydrogen to O(11) of an adjacent molecule, and N(24) accepts a hydrogen from O(12) of that molecule, that is, the hydrogen of the carboxyl group at the C(2) position is localized at O(12).

In CZX-HCl, however, as shown in Fig. 4b, N(25) donates a hydrogen to a chlorine anion, and N(24) is protonated so that it donates that hydrogen to oxygen of the water molecule.

The bond distance of N(25)–C(23) is nearly equal to that of N(24)–C(23) for both CZX and CZX-HCl. This is also observed in other cephalosporins, as shown in Table V.

The aminothiazole ring and the methoxyimino group are planar within the experimental deviation in CZX and CZX-HCl as well as in RU25159<sup>2)</sup> and CMX A and B<sup>3)</sup>; moreover, these two groups are obviously quasi coplanar (Figs. 2 and 3). The dihedral angles between these two mean planes are 18° for CZX, 10° for CZX-HCl, 2° for RU25159, 10° for CMX A and 11° for CMX B (Table VI). The coplanarity of the aminothiazole ring and the methoxyimino group seems to be a common characteristic for all cephalosporins of this type. However the coplanar orientation with respect to the cephem moiety differs greatly due to







Fig. 3. Stereographic Molecular Conformations of RU25159, Cefmenoxime A and B after Least-Squares Fitting of Their β-Lactam Ring
a) RU25159, b) CMX A, c) CMX B.

rotation around the C(14)–C(16) bond (Table IV). Lacking any intrahydrogen bonds to stabilize this coplanarity, the coplane in these molecules is likely to easily adopt various orientations due to the various packing forces and the formation of intermolecular hydrogen bonds in the aminothiazole ring. The varied orientations of these coplanes observed in the



Fig. 4. Aminothiazole Moieties of CZX and CZX-HCl a) CZX, b) CZX-HCl.

TABLE V. Bond Distances (Å) between C and N Atoms in the Aminothiazole Ring

|         | C(23)-N(25) | N(25)            | C(23)-N(24) | N(24)       |
|---------|-------------|------------------|-------------|-------------|
| CZX     | 1.34        | -NH <sub>2</sub> | 1.33        | H-Accepter  |
| CZX-HCl | 1.33        | $-NH_{2}$        | 1.33        | Protonation |
| RU25159 | 1.40        | Unknown          | 1.38        | Unknown     |
| CMX A   | 1.31        | $-NH_2$          | 1.33        | Protonation |
| CMX B   | 1.33        | $-NH_{2}$        | 1.31        | Non-H aton  |

TABLE VI. Dihedral Angles (°) between Best Planes

|         | CZX | CZX-HCl | RU25159 | CMX A | CMX B |
|---------|-----|---------|---------|-------|-------|
| [1]–[2] | 18  | 10      | 2       | 10    | 11    |
| [1]–[3] | 55  | 81      | 83      | 55    | 71    |
| [2]–[3] | 61  | 83      | 81      | 59    | 68    |

<sup>[1]</sup> Plane through C(20), C(21), S(22), C(23) and N(24), aminothiazole ring. [2] Plane through C(14), C(16), N(17), Q(18) and C(20), oxyimino group. [3] Plane through C(7), N(13), C(14), O(15) and C(16), exocyclic amido function.

crystal state may suggest that the differences in potential energy for such conformational changes are so small that the rotation of the C(7) side chain with respect to the cephem moiety is not rigidly constrained. A similar idea has been proposed by Laurent *et al.*<sup>2)</sup>

Generally the syn oxyimino group seems to be able to form a coplane together with the aminothiazole ring.<sup>2-4)</sup> The orientation of this bulky coplane may be flexible, which may have something to do with protecting the  $\beta$ -lactam moiety from  $\beta$ -lactamases. Analysis of the *anti* oxyimino isomer should be helpful in establishing the validity of this hypothesis.

# The Exocyclic Amino Moiety

The exocyclic amido groups of both CZX and CZX-HCl at the C(7) position are also planar within the experimental deviation, such that the O(15) and H(13) atoms are *trans* to one another, showing that the N(13) atom takes the  $sp^2$  hybrid orbital. The bond distance between N(13) and C(14) is somewhat shorter than the usual C-N single bond distance (1.472 Å), 9 i.e. 1.31 Å (CZX) and 1.33 Å (CZX-HCl), acting somewhat like a double bond and thus unable to rotate freely. Intermolecular hydrogen bonds are observed between the N(13)

and O(15) atoms. These are the same properties as proposed for the peptide bond moiety in proteins by Pauling et al.  $^{10)}$ 

# Packing and Hydrogen Bonds

Figure 5 shows the molecular packing diagrams of CZX and CZX-HCl drawn with the PLUTO program, viewed along the a axis. The principal intermolecular hydrogen bond distances are listed in Table VII. The exocyclic amido groups at the C(7) position have intermolecular hydrogen bonds between N(13) and O(15) that link the molecules along the a axis in both CZX and CZX-HCl.

In CZX, two other hydrogen bonds,  $N(25)-H(25a)\cdots O(11)$  [2.91 Å] and  $N(24)\cdots H(12)-O(12)$  [2.64 Å] extend the crystal along the c axis, and there is one van der





Fig. 5. Molecular Packing Diagrams of CZX and CZX-HCl The dotted lines indicate the hydrogen bonds or van der Waals short contacts. a) CZX, b) CZX-HCl.

|              | CZX-HCl             |                                 |                                                                                                      |                                                                                                                    | CZX                                                                                                                  |                                                                                                    |
|--------------|---------------------|---------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Acceptor     | A                   | Donor                           |                                                                                                      | Acceptor                                                                                                           | A                                                                                                                    | Donor                                                                                              |
| $O(15)^{a)}$ |                     | N(13)                           | 2.89                                                                                                 | O(15)                                                                                                              |                                                                                                                      | $N(13)^{a)}$                                                                                       |
| Cl           |                     | O(11)                           | 2.91                                                                                                 | O(11)                                                                                                              |                                                                                                                      | $N(25)^{b)}$                                                                                       |
| C1           |                     | $N(25)^{c)}$                    | 2.64                                                                                                 | $N(24)^{b)}$                                                                                                       |                                                                                                                      | O(12)                                                                                              |
|              | O(15) <sup>a)</sup> | Acceptor O(15) <sup>a)</sup> Cl | Donor Acceptor $ \begin{array}{cccc} N(13) & \cdots & O(15)^{a} \\ O(11) & \cdots & C1 \end{array} $ | Donor Acceptor $ \begin{array}{cccc} 2.89 & N(13) & \cdots & O(15)^{a} \\ 2.91 & O(11) & \cdots & C1 \end{array} $ | Acceptor         Donor         Acceptor $O(15)$ 2.89 $N(13)$ $\cdots$ $O(15)^{a}$ $O(11)$ 2.91 $O(11)$ $\cdots$ $C1$ | Acceptor         Donor         Acceptor $O(15)$ 2.89 $N(13)$ $O(15)^{a}$ $O(11)$ 2.91 $O(11)$ $C1$ |

TABLE VII. Principal Intermolecular Hydrogen-Bond Distances (Å)

a) x+1, y, z. b) -x+0.5, -y+1, -z+1. c) x+0.5, -y+0.5, -z+1.

3548

Waals short contact,  $S(22) \cdot \cdot \cdot S(22)$  [3.51Å]. In CZX-HCl, the chlorine anion and the water oxygen contribute in linking the three molecules by means of hydrogen bonds, *i.e.*  $C1 \cdot \cdot \cdot H(25b)$  [3.18Å],  $C1 \cdot \cdot \cdot H(11) - O(11)$  [2.93Å] and  $OW \cdot \cdot \cdot H(24) - N(24)$  [2.72Å]. Though the water hydrogens could not be found in this structure analysis, the distances of  $OW \cdot \cdot \cdot O(12) = 3.06$ Å and  $C1 \cdot \cdot \cdot OW = 3.25$ Å suggest the possibility of hydrogen bonds between them.

These hydrogen bonds and short contacts constitute a three-dimensional network which stabilizes the CZX and CZX-HCl crystals.

Acknowledgement The authors are grateful to Prof. T. Fujiwara of the Faculty of Science, Shimane University, for helpful suggestions throughout this work. The authors also thank Dr. A. Wakahara of this company for his kind help in carrying out computations.

#### References

- T. Takaya, H. Takasugi, T. Masugi, T. Chiba, H. Kochi, T. Takano and H. Nakano, Nippon Kagaku Kaishi, 1981, 785 (1981).
- 2) G. Laurent, G. Evrard and F. Durant, Eur. J. Med. Chem.-Chim. Ther., 17, 281 (1982).
- 3) K. Kamiya, M. Takamoto, Y. Wada and M. Nishikawa, Chem. Pharm. Bull., 29, 609 (1981).
- 4) A. Miyamae, S. Koda and Y. Morimoto, Acta Crystallogr., Sect. A, 40 (Suppl.), C-76 (1984).
- 5) P. Main, M. M. Woolfson, L. Lessinger, G. Germain and J. P. Declercq, MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Univ. of York, England, 1974.
- 6) T. Ashida, HBLS V, The Universal Crystallographic Computing System, Osaka, p. 55. The computation Center, Osaka University.
- 7) "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham, 1974.
- 8) C. K. Johnson, ORTEP II. Report ORNL-TM-5138. Oak Ridge National Laboratory, Tennessee, 1976.
- 9) "International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, 1962.
- 10) L. Pauling, R. B. Cover and H. R. Branson, Proc. Natl. Acad. Sci. U.S.A., 37, 205 (1951).
- 11) S. Motherwell, PLUTO. A Program for Plotting Molecular and Crystal Structures, Univ. of Cambridge, England, 1978.