Chem. Pharm. Bull. 34(9)3925—3927(1986)

Conversion of Furostanol Glycosides into Steroidal Alkaloid Glycosides. I. From Methyl Protodioscin to Kryptogenin 3-O-β-Chacotrioside

SEIICHI TESHIMA,^a TETSUYA KAJIMOTO,^{b,1)} KIMIKO NAKANO,^b
TOSHIAKI TOMIMATSU,^b MASAKI YAMASAKI^c
and TOSHIHIRO NOHARA*.^a

Faculty of Pharmaceutical Sciences, Kumamoto University,^a 5-1 Oe-honmachi, Kumamoto 862, Japan, Faculty of Pharmaceutical Sciences, Tokushima University,^b 1-78 Shomachi, Tokushima 770, Japan and Department of Biochemistry, Medical School, Kumamoto University,^c Honjo, Kumamoto 860, Japan

(Received February 17, 1986)

A furostanol glycoside, methyl protodioscin (1), was converted to kryptogenin 3-O- β -chacotrioside (4), which is a key intermediate in the chemical transformation to the solanidane glycoside.

Keywords—chemical conversion; furostanol glycoside; methyl protodioscin; kryptogenin glycoside; chacotrioside; steroidal alkaloid glycoside; oxidation

Kryptogenin (5) is regarded as a key intermediate in the course of transformation from steroidal sapogenols to the bioactive steroidal alkaloids, 22, 25-isosolanidine or solasodine.²⁾ We have now succeeded in the transformation of a furostanol glycoside, methyl protodioscin (1),³⁾ into kryptogenin 3-O- β -chacotrioside (4), as the first step in an attempt to obtain the solanidane glycoside.

Methyl protodioscin (1), obtained from Trillium tschonoskii in ca. 2.3% yield, was acetylated with Ac₂O-pyridine and the resultant acetate was then oxidized with the Jones reagent (a mixture of CrO₃ and H₂SO₄ in dil. acetone), followed by saponification with 3% KOH-MeOH to give a mixture of two predominent compounds. They were separated by silica gel column chromatography (eluted with CHCl₃-MeOH-H₂O (7:3:0.2)) to give a major oxidative product 2 (yield, 69%) and a by-product 3 (25%). Compound 2 was recrystallized from dil. MeOH to give colorless needles, mp 204-207 °C, which showed a peak at m/z 1069.0 arising from $[M + Na]^+$ in fast atom bombardment mass spectrometry (FAB-MS), absorptions due to the carbonyl groups at 1735 and 1710 cm⁻¹ and a strong band due to hydroxyl groups at 3400 cm⁻¹ in the infrared (IR) spectrum. Its circular dichroism (CD) spectrum exhibited a negative Cotton effect ($[\theta]$: -1.64×10^4) at 294 nm, and was consistent with that of kryptogenin. Compound 3, colorless needles, mp 268-271 °C, FAB-MS (m/z): 807.8 $[M+K]^+$, 791.6 $[M+Na]^+$, was identified as 3-O- β -chacotriosyl pregn-5, 16-dien-20-one⁴⁾ on the basis of the carbon-13 nuclear magnetic resonance (¹³C-NMR) spectrum and direct comparison with an authentic specimen. Compound 2 was subsequently hydrolyzed with β -glucosidase to furnish a product 4 (yield 80% from 2), which was recrystallized from dil. MeOH to give colorless needles, mp 231—234°C, CD [θ] nm: -1.79×10^4 (294) (negative Cotton), IR $v_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3400, 1735, 1710. Compound 4 showed peaks at m/z 923.6 and 907.9 originating from $[M+K]^+$ and $[M+Na]^+$ in the FAB-MS. The ¹³C-NMR spectrum showed a total of forty-five carbon signals, which indicated that the aglycone part (except C-2 to C-4) resembled those of kryptogenin,⁵⁾ while the sugar signals were superimposable on those of the β -chacotriosyl residue⁶⁾ of methyl protodioscin (Table I).

Chart 1

The above spectral data suggested 4 to be kryptogenin 3-O- β -chacotrioside. Compound 4 was eventually obtained from 1 in 55% yield. This is the first example of conversion of a furostanol glycoside to a kryptogenin glycoside. This new oxidative reaction provides a simple route to the kryptogenin glycosides in good yield. We are investigating a route *via* the 16-benzyloxime to convert 4 into pharmacologically active steroidal alkaloid glycosides.

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a JASCO DS-701 G spectrometer and ¹³C-NMR spectra were taken on a JEOL FX-200 spectrometer with tetramethylsilane as an internal standard. MS were recorded with a JEOL JMS-01SG instrument. CD spectra were recorded with a JASCO J-50A spectrometer.

3-O-β-Chacotriosyl Kryptogenin 26-O-β-D-Glucoside (2)—A solution of methyl protodioscin (1), 3.17 g, in pyridine (25 ml) and anhydrous acetic acid (12 ml) was heated on a hot bath for 1 h, and the reaction mixture was worked-up in the usual way to provide the acetate, which was then dissolved in acetone (50 ml) and oxidized with Jones reagent (monitored by thin layer chromatography (TLC) using Ehrlich reagent⁷⁾ as the spraying agent). The oxidative product was dissolved in MeOH (20 ml), saponified by treatment with 3% KOH-MeOH (20 ml) for 1 h at room temperature and neutralized with 1 N HCl-MeOH. The reaction mixture was evaporated under reduced pressure to give a residue, which was passed through a Sephadex LH-20 column to remove the resultant salt. The oxidative products contained two components, which were separated by using silica gel column chromatography (Merck, Type 60) with CHCl₃-MeOH-H₂O (7:3:0.2) to afford 2 (2.14 g) and 3 (0.59 g).

Compound **2**, colorless needles, mp 204—207 °C. CD ($c = 5.35 \times 10^{-5}$, ethanol) [θ]²⁴ (nm): -1.64×10^4 (294) (negative Cotton). IR ν_{\max}^{KBr} cm⁻¹: 3400, 1735, 1710. MS (m/z): 413, 395 377, 213. FAB-MS (m/z): 1069.0 [M+Na]⁺. Compound **3**, colorless needles, mp 268—271 °C. IR ν_{\max}^{KBr} cm⁻¹: 3300, 1640. MS (m/z): 315, 314, 297, 296, 279,

TABLE I. ¹³ C-NMR Data for Methyl Protodioscin (1), ⁶⁾ Con	npound 4 and Kryptogenin ⁵⁾
--	--

	1 (in pyridine- d_5)	$\frac{4}{\text{(in pyridine-}d_5)}$	Kryptogenin (in CDCl ₃)			(in pyridine d_5)	d (in pyridine- d_5)
Aglycone 1	37.7	37.2	37.2	3-O-Gly	1′	100.6	100.3
2	30.3	30.1	31.4		2'	80.1	78.7
3	78.6	77.8	71.3		3′	76.7	76.9
4	40.1	38.6	42.1		4′	78.3	78.0
5	141.3	140.7	141.2		5′	77.9	77.9
6	121.7	121.4	120.6		6′	61.9	61.3
7	32.3	31.9	31.7	Rha	1'', 1'''	101.9, 103.1	102.0, 102.9
8	31.9	31.0	31.0		2'', 2'''	72.8, 72.9	72.6, 72.8
9	50.7	50.0	49.7		3'', 3'''	2×72.4	72.4, 72.5
10	37.4	37.1	36.6		4'', 4'''	73.9, 74.3	73.8, 74.1
11	21.3	20.7	20.6		5'', 5'''	69.4, 70.7	69.5, 70.4
12	40.7	40.4	39.6		6′′, 6′′′	18.3, 18.5	18.5, 18.6
13	41.0	41.7	41.7	26- <i>O</i> -Glc	1′′′′	104.8	
14	56.9	51.1	51.2		2′′′′	75.2	
15	32.5	38.9	38.6		3′′′′	78.6	
16	81.5	217.7	218.1^{a}		4′′′′	72.3	
17	64.4	66.4	66.2		5′′′′	78.1	
18	16.3	15.6	15.4		6''''	63.3	
19	19.5	19.4	19.4	OMe		47.4	
20	39.2	43.7	43.3				
21	16.0	12.8	12.9				
22	112.9	213.3	214.4^{a}				
23	31.0	37.4	37.0				
24	28.5	27.7	26.3				
25	34.4	36.1	35.2				
26	75.2	67.4	67.3				
27	17.2	17.3	16.7				

a) Assignments for signals due to C-16 and -22 in the preceding paper^{5b)} should be corrected as shown in this Table.

253. FAB-MS (m/z): 807.8 [M + K]⁺, 791.6 [M + Na]⁺. ¹³C-NMR (pyridine- d_5) δ : 37.3, 30.1, 77.8, 38.9, 141.2, 121.6, 32.3, 31.8, 50.7, 37.1, 20.8, 46.2, 30.3, 56.4, 35.1, 155.2, 144.9, 15.9, 19.3, 196.4, 27.2 (C_1 — C_{21}); sugar part, 100.2, 78.6, 76.8, 78.1, 77.8, 61.2 (C_1 - C_6), 102.8, 101.9 (C_1 - C_1 - C_1 - C_1 - C_1 - C_2 - C_1 - C_2 - C_2 - C_2 - C_2 - C_2 - C_3 - $C_$

Kryptogenin 3-O-β-Chacotrioside (4)—Compound 2 (2.14 g) was dissolved in dist. water (30 ml), and the solution was incubated with β-glucosidase (70 mg) at 36 °C for 24 h. After usual work-up, the product was recrystallized from dil. MeOH to provide colorless needles (1.44 g) of 3, kryptogenin 3-O-β-chacotrioside, mp 231—234 °C. FAB-MS (m/z): 923.6 $[M+K]^+$, 907.9 $[M+Na]^+$. CD $(c=4.75\times10^{-5}$, ethanol) $[\theta]^{20}$ (nm): -1.79×10^4 (294) (negative maximum). IR v_{max}^{BBr} cm⁻¹: 3400, 1735, 1710.

References and Notes

- 1) Present address: Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan.
- 2) a) F. C. Uhle and F. Sallmann, J. Am. Chem. Soc., 82, 1190 (1960); b) F. C. Uhle, ibid., 75, 2280 (1953); c) Idem, ibid., 83, 1460 (1961).
- 3) a) T. Kawasaki, T. Komori, K. Miyahara, T. Nohara, I. Hosokawa and K. Mihashi, Chem. Pharm. Bull., 22, 2164 (1974); b) T. Nohara, F. Kumamoto, K. Miyahara and T. Kawasaki, ibid., 23, 1158 (1975).
- 4) T. Nohara, H. Yabuta, M. Suenobu, R. Hida, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., 21, 1240 (1973).
- 5) a) J. Kitajima, T. Komori and T. Kawasaki, Yakugaku Zasshi, 102, 1009 (1982); b) K. Nakano, Y. Kashiwada, T. Nohara, T. Tomimatsu, H. Tsukatani and T. Kawasaki, ibid., 102, 1031 (1982).
- 6) K. Nakano, dissertation (Tokushima University, 1984).
- 7) S. Kiyosawa, H. Hutoh, T. Komori, T. Nohara, I. Hosokawa and T. Kawasaki, *Chem. Pharm. Bull.*, 16, 1162 (1968).