Chem. Pharm. Bull. 36(12)4814—4820(1988)

Substituent Entropy Constant $\sigma_{S^{\circ}}$ and Descriptor μ^2/α of sym-Disubstituted Benzene Derivatives. Estimation and Validity of Novel Quantitative Structure—Activity Relationships Descriptors

HIDEKO KAWAKI,*.a FUMIKA MASUDAb and YOSHIO SASAKIb

Faculty of Pharmacy, Kinki University,^a Kowakae 3-4-1, Higashi-Osaka 577 and Faculty of Pharmaceutical Sciences, Osaka University,^b Yamadaoka 1-6, Suita 565, Japan

(Received April 5, 1988)

The values of substituent entropy constant σ_{s} of *sym*-disubstituted benzene derivatives have been determined by inter- or extrapolation of the linear relation between five observed values and those of monosubstituted benzene derivatives.

Analysis of the quantitative structure–activity relationships (QSAR) by means of σ_s thus estimated, together with the additional descriptor μ^2/α , is shown to be more effective than approaches hitherto used for the evaluation of actinidin-catalyzed hydrolysis of substituted phenyl hippurates, and the reaction between thiamine and substituted aniline derivatives with thiaminase.

Keywords—QSAR; substituent entropy constant σ_s ; descriptor μ^2/α ; sym-disubstituted benzene; actinidin-catalyzed hydrolysis; substituted phenyl hippurate; thiaminase; thiamine; substituted aniline

In the previous report,¹⁾ the authors have discussed the origin of the two kinds of novel quantitative structure-activity relationships (QSAR) descriptors σ_S and μ^2/α . The former is an effective descriptor representing the energies of both dispersion $E_{\rm dis}$ and repulsion $E_{\rm rep}$ forces from the evaluation of the force constants ε/k and σ determined empirically by applying the Lennard-Jones 12, 6 potential. The latter covers both induction $E_{\rm ind}$ and orientation $E_{\rm ori}$ forces.

These two kinds of novel descriptors proved to be effective for QSAR analyses of biological responses, including the inhibition of enzyme activity, *etc*. For practical purposes, the descriptor $\sigma_{S^{\circ}}$, called the substituent entropy constant,²⁾ is determined from the absolute entropy $S_{298}^{\circ}(g)$ of the pure material by the use of Eq. 1;

$$\sigma_{S^{\circ}} = \log[S_{298}^{\circ}(g)(B)/S_{298}^{\circ}(g)(A)]$$
 (1)

where (A) and (B) denote the reference benzene and substituted benzenes, respectively. The data on $S_{298}^{\circ}(g)$ compiled in the literature³⁾ generally do not extend to polysubstituted benzene derivatives. Thus we tried to estimated the unknown σ_{S} values of *sym*-disubstituted benzene derivatives, and in addition, the descriptor μ^2/α was also estimated empirically. In this work, the validities of these descriptors have been examined in the QSAR analyses of actinidincatalyzed hydrolysis of substituted phenyl hippurates and of the reaction of thiamine and substituted aniline derivatives with thiaminase.

Experimental

Numerical Treatment—QSAR analyses were carried out by using an NEC PC-9801 type personal computer utilizing the multiregression analysis program MR compiled in the multivariate analysis program package MVA.⁴⁾

The standard deviation (S.D.) is given by S.D. = $[S_{se}/(n-k-1)]^{1/2}$, where n and k denote the number of observations and variables, and S_{se} denotes the sum of squares of the residuals. The values into parentheses in the regression equations denote the 95% confidence levels.

Results and Discussion

Substituent Entropy Constant $\sigma_{S^{\circ}}$ of Monosubstituted Benzene and Methane Derivatives

In this work, the values of σ_{S^0} determined by Eq. 1 are compared using two kinds of linear relations between monosubstituted methanes and benzenes as shown in Fig. 1; the results are summarized in Table I.

Alkanes and alkylbenzene derivatives afforded a linear relation and the values of $\sigma_{S^{\circ}}$ are $R \ln N$ (e.u.) higher than those of halide, cyanide, etc. with lower symmetry number. These results also support the view that $\sigma_{S^{\circ}}$ estimated for monosubstituted benzene derivatives reliably represent both dispersion and repulsive interaction energies.

R	MeR	PhR	R	MeR	PhR
Н	0.000	0.000	C ₆ H ₅	0.236	0.164
Me	0.091	0.076	NMe_2	0.190	0.134
Et	0.161	0.127	NHMe	0.166	0.103
n-Pr	0.221	0.173	NH_2	0.115	0.074
iso-Pr	0.199	0.159	NHPh	0.263	0.181
n-Bu	0.273	0.213	ОН	0.110	0.069
iso-Bu	0.266	0.200	OMe	0.156	0.127
sec-Bu	0.266	0.202	SH	0.136	0.097
tert-Bu	0.210	0.173	F	0.078	0.051
$n-C_5H_{11}$	0.319	0.250	Cl	0.099	0.067
$n-C_6H_{13}$	0.361	0.284	Br	0.122	0.083
$n-C_7H_{15}$	0.399	0.316	I	0.135	0.094
$n-C_8H_{17}$	0.434	0.345	CF ₃	0.188	0.142
$n-C_9H_{19}$	0.466	0.373	CHO	0.152	0.127
$n-C_{10}H_{21}$	0.496	0.398	COMe	0.200	0.142
$n-C_{11}H_{23}$	0.524	0.423	CO_2H	0.181	0.137
$n-C_{12}H_{25}$	0.551	0.446	CO_2Me	0.254	0.200
$n-C_{13}H_{27}$	0.575	0.468	CN	0.120	0.077
$n-C_{14}H_{29}$	0.600	0.489	$C \equiv CH$	0.125	0.077
$n-C_{16}H_{33}$	0.642	0.528	$CH = CH_2$	0.156	0.108
CH ₂ Br	0.188	0.150			

TABLE I. Typical Substituent Entropy Constants $\sigma_{S^{\circ}}$

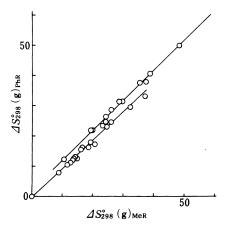


Fig. 1. Correlation between the Increment of Absolute Entropy $\Delta S_{298}^{\circ}(\mathbf{g})$ of Benzene (PhR) and Methane (MeR) Derivatives

Estimation of $\sigma_{S^{\circ}}$ of sym-Disubstituted Benzene Derivatives

For sym-disubstituted benzene derivatives, the observed five absolute entropies $S_{298}^{\circ}(g)$ afforded linear relations with those of monosubstituted benzenes as given by Eqs. 2, 3, and 4; n=5 (R=F, Cl, Br, Me, Et).^{3c)}

$$S_{298}^{\circ}(\mathbf{g}), (1, 2) = 1.96(0.15) S_{298}^{\circ}(\mathbf{g})_{\text{mono}} - 65.39(0.18)$$
 (2)
 $r = 0.999, \quad F = 1767, \quad \text{S.D.} = 0.49$

$$S_{298}^{\circ}(g), (1,3) = 2.05(0.10)S_{298}^{\circ}(g)_{\text{mono}} - 71.84(0.11)$$

$$r = 1.000, \quad F = 3976, \quad \text{S.D.} = 0.34$$

$$S_{298}^{\circ}(\mathbf{g}), (1,4) = 2.05(0.06) S_{298}^{\circ}(\mathbf{g})_{\text{mono}} - 73.20(0.07)$$
 (4)
 $r = 1.000, F = 10724, S.D. = 0.21$

The unknown values of $S_{298}^{\circ}(g)$ of *sym*-disubstituted benzene derivatives could be estimated from Eqs. 2, 3 and 4 by inter- or extrapolations, and transformed to $\sigma_{S^{\circ}}$ by Eq. 1. The values of $\sigma_{S^{\circ}}$ thus obtained are summarized in Table II and their validity was also confirmed by the gas liquid chromatographic (GLC) method.⁴⁾

Estimation of Descriptor μ^2/α of sym-Disubstituted Benzene Derivatives

For the estimation of the novel QSAR descriptor μ^2/α , the values of dipole moment μ (debye) and polarizability α (\times 10⁻²⁴ cm³) are necessary. The former are usually available in the literature⁵⁾ or could be determined as the vector sum of those of monosubstituted benzene derivatives. In addition, the polarizability could also be estimated as the simple sum $\Sigma\Delta\alpha_{\rm mono}$ of the excess polarizability $\Delta\alpha_{\rm mono}$ of monosubstituted benzene derivatives, where $\Delta\alpha = \alpha_{\rm PhR} - \alpha_{\rm PhH}$ (cf. Table IIIa). The $\Delta\alpha$ of disubstituted benzene derivatives are given by Eqs. 5, 6 and 7 (cf. Table IIIb);

1, 2-series:

$$\Delta\alpha(1,2) = 0.989(0.008)\Sigma\Delta\alpha - 0.013(4.466)$$
 (5)
 $n = 43$, $r = 1.000$, $F = 57371$, S.D. = 0.071

Table II. Observed and Estimated Values of $\sigma_{S^{-}}$ on the *sym*-Disubstituted Benzene Derivatives

	Mono	1, 2	1, 3	1, 4
NO_2	0.115	0.187	0.192	0.187
CN	0.076	0.121	0.124	0.118
CF_3	0.141	0.230	0.237	0.232
COMe	0.141	0.230	0.237	0.232
CO ₂ Me	0.200	0.321	0.327	0.326
F	0.051	0.078	0.076	0.069
Cl	0.066	0.103	0.106	0.097
Br	0.081	0.128	0.134	0.128
I	0.094	0.151	0.155	0.150
Me	0.076	0.117	0.123	0.117
Et	0.127	0.208	0.213	0.207
OMe	0.127	0.207	0.213	0.208
ОН	0.069	0.108	0.110	0.104
NH_2	0.074	0.117	0.119	0.113
NMe ₂	0.134	0.218	0.223	0.219

^{-,} observed values.

4817

	$\alpha^{a)}$	$\Delta \alpha_{\text{mono}}^{b)}$		$\alpha^{a)}$	$\Delta \alpha_{\text{mono}}^{b}$
Н	10.380	0	Et	14.179	3.800
NO ₂	12.978	2.599	n-Pr	16.035	5.655
CN	12.478	2.098	iso-Pr	16.024	5.645
COMe	14.557	4.178	<i>n</i> -Bu	17.876	7.497
COEt	16.181	5.802	iso-Bu	17.917	7.537
CHO	12.659	2.279	sec-Bu	17.848	7.469
CF ₃	12.199	1.819	tert-Bu	17.833	7.453
CO ₂ Me	15.198	4.819	n-Pent	19.714	9.334
CO ₂ Et	16.886	6.506	$CH = CH_2$	14.436	4.056
F	10.336	-0.044	OMe	13.155	2.775
Cl	12.352	1.973	OEt	14.919	4.539
Br	13.471	3.092	ОН	11.147	0.767
I	15.515	5.136	NH_2	12.127	1.747
Me	12.309	1.929	NMe ₂	16.209	5.830

Table IIIa. Polarizability α [10⁻²⁴ cm³] of Monosubstituted Benzene Derivatives

1, 3-series;

$$\Delta\alpha(1,3) = 1.003(0.0008)\Sigma\Delta\alpha - 0.023(2.518)$$
 (6)
 $n = 31$, $r = 1.000$, $F = 62276$, S.D. = 0.065

1, 4-series;

$$\Delta\alpha(1,4) = 1.011(0.009)\Sigma\Delta\alpha - 0.055(1.271)$$
 (7)
 $n = 35, r = 1.000, F = 56311, S.D. = 0.068$

The values of descriptor μ^2/α are summarized in Table IV.

In a weak interaction such as a bioreaction, the biological response, BR, could be given by Eq. 8;

$$BR = E_{\text{rep}} + E_{\text{dis}} + E_{\text{CT}} + E_{\text{ES}} + E_{\text{PL}}$$

$$BR = a\sigma_{S} + b\sigma_{\pi} + c(\mu^{2}/\alpha) + d$$
(8)

where $E_{\rm CT}$, $E_{\rm ES}$ and $E_{\rm PL}$ are the energies of charge transfer, electrostatic and polarization interactions, respectively. The descriptors $\sigma_{s^{\circ}}$, σ_{π} and μ^2/α correspond to $E_{\rm rep}+E_{\rm rep}$, $E_{\rm CT}$ and $E_{\rm ES}+E_{\rm PL}$, respectively; the quantum chemical approach given by Aida and Nagata, ⁷⁾ as well as the statistical thermodynamical treatment given by Sasaki *et al.*²⁾ support these correspondences.

Examples of QSAR Analyses

Actinidin-Catalyzed Hydrolysis of Substituted Phenyl Hippurates at 25 °C and pH 6.0^{8} (cf. Table V).

3-substituted series;

$$\log(1/K_{\rm m}) = 4.274\sigma_{S^{\circ}} + 5.124\sigma_{S^{\circ}(x)} + 2.870$$

$$(1.308) \quad (1.520) \quad (0.062)$$

$$n = 16, \quad r = 0.936, \quad F = 45.75, \quad \text{S.D.} = 0.132$$

where the subscript x means halogen and the relation of $\sigma_{S^{\circ}}$ and $\sigma_{S^{\circ}(x)}$ is r = -0.124. 3- and 4-substituted series;

a) Obtained from n_D^{20} and D_4^{20} by applying the following equation; $\alpha = [(n^2-1)/(n^2+2)](M/D)(3/4\pi N)$ where M and N mean molar weight and Avogadro's number, respectively. b) $\alpha_R - \alpha_H$.

TABLE IIIb.	Polarizability α	$[10^{-24} \text{cm}^3]$	of Disubstituted Benzenes
-------------	------------------	---------------------------	---------------------------

	$\alpha_{\rm obs}$	α_{calcd}		α_{obs}	α _{calcd}		α_{obs}	α _{calcd}
1,2-R ₁ ,R ₂						•		
Me ₂	14.191	14.184	F, Me	12.140	12.232	NH ₂ , Et	15.796	15.855
Et,	17.886	17.886	Cl, Me	14.189	14.227	NH_2 , $CH = CH_2$	16.199	16.109
Et, Me	16.034	16.035	Cl, Et	16.078	16.078	NH ₂ , Cl	14.065	14.047
n-Pr, Me	17.889	17.860	Cl, iso-Pr	17.927	17.904	NO_2 , Me	14.842	14.847
iso-Pr, Me	17.868	17.871	$Cl, CH = CH_2$	16.336	16.332	NO_2 , Et	16.714	16.698
n-Bu, Me	19.677	19.693	Br, Et	17.212	17.185	NO_2 , OMe	15.698	15.684
iso-Bu, Me	19.762	19.733	Br, iso-Pr	19.042	19.011	NO_2 , OEt	17.533	17.430
sec-Bu, Me	19.697	19.665	Br, $CH = CH_2$	17.359	17.439	CN, Me	14.345	14.351
tert-Bu, Me	19.675	19.650	$(OMe)_2$	15.632	15.856	COMe, OMe	17.137	17.246
n-Pr, Et	19.739	19.722	OMe, Cl	15.022	15.065	CHO, Me	14.566	14.531
iso-Pr, Me	19.734	19.708	OEt, Me	16.802	16.767	CO ₂ Me, OMe	17.695	17.665
(iso-Pr) ₂	21.422	21.537	OH, Me	13.101	13.034	$(CO_2Me)_2$	19.498	19.47
F_2	10.472	10.370	OH, Cl	13.029	13.077	CO ₂ Et, OMe	19.597	19.551
Cl ₂	14.269	14.270	NH ₂ , Me	13.838	14.004	$(CO_2Et)_2$	23.261	23.242
Br ₂	16.555	16.485	2,			` 2 /2		
1,3-R ₁ R ₂								
Me ₂	14.255	14.227	tert-Bu, iso-Pr	23.456	23.497	OH, Me	13.006	13.062
Et ₂	17.974	17.980	F_2	10.397	10.269	OH, Cl	13.167	13.106
Et, Me	16.115	16.104	Cl ₂	14.327	14.315	NH ₂ , Me	14.048	14.045
iso-Pr, Me	17.957	17.955	Br ₂	16.522	16.560	NH ₂ , Cl	14.019	14.089
n-Pr, Me	17.976	17.966	F, Me	12.197	12.248	NH_2 , Br	15.289	15.21
n-Bu, Me	19.812	19.813	Cl, Me	14.253	14.271	NMe ₂ , Me	18.122	18.14
iso-Bu, Me	19.862	19.854	Cl, Et	16.089	16.148	NO ₂ , Me	14.898	14.899
sec-Bu, Me	19.801	19.785	Br, Me	15.343	15.394	COMe, Me	16.330	16.483
n-Pent, Me	21.684	21.656	OMe, Me	14.974	15.077	COMe, OMe	17.466	17.332
n-Pr, Et	19.842	19.842	OEt, Me	16.901	16.846	CO ₂ Et, OMe	19.630	19.669
iso-Pr, Et	19.966	19.831	J = 1, 1.12			2		
1,4-R ₁ R ₂	171700	.,,,,,,						
Me ₂	14.272	14.226	$(n-Pr)_2$	21.768	21.762	Br, $CH = CH_2$	17.630	17.553
Et ₂	17.994	18.009	<i>n</i> -Pr, iso-Pr	21.859	21.751	OMe, Me	14.980	15.082
Et, Me	16.134	16.117	(iso-Pr) ₂	21.700	21.740	OEt, Me	16.873	16.86
n-Pr, Me	17.978	17.994	(sec-Bu) ₂	25.357	25.430	OEt, Cl	16.878	16.909
iso-Pr, Me	18.045	17.983	F, Me	12.204	12.231	OH, Me	12.995	13.05
n-Bu, Me	19.824	19.856	Cl, Me	14.266	14.270	OH, iso-Bu	18.832	18.722
iso-Bu, Me	19.857	19.897	Cl, Et	16.150	16.161	NH_2 , Et	15.911	15.93
sec-Bu, Me	19.750	19.828	Cl, iso-Pr	18.009	18.027	NMe ₂ , Me	17.988	18.170
tert-Bu, Me	19.789	19.828	$CI, CH = CH_2$	16.561	16.421	NO_2 , Et	16.875	16.79:
n-Pr, Et	19.841	19.885	Br, Me	15.450	15.402	COMe, Cl	16.500	16.54
iso-Pr, Et	19.868	19.874	Br, Et	17.278	17.293	CO ₂ Et, OMe	19.845	19.710
tert-Bu, Et	21.724	21.703	Br, iso-Pr	19.148	19.159	20221, 31110		

$$\log(1/K_{\rm m}) = 4.473\sigma_{S'(3)} + 5.221\sigma_{S'(x),(3)} + 0.768\mu^2/\alpha_{(4)} + 2.839$$

$$(0.997) \qquad (1.468) \qquad (0.207) \qquad (0.042)$$
(10)

n=23, r=0.945, F=52.63, S.D. = 0.137

where the subscripts (3) and (4) denote meta and para substituted positions, and the correlation of $\sigma_{S^{\circ}}$ and μ^2/α is r = -0.227.

Equation 10 suggests that $\sigma_{S^{\circ}}$ is effective separately for halogen and nonhalogen series in all meta congeners, whereas the μ^2/α term operates for the para series only. The result of Carroti et al.⁸ is given by Eq. 13;

			α			μ^2/α	
		1, 2	1, 3	1, 4	1, 2	1, 3	1, 4
N	NO_2	15.510	15.571	15.581	2.399	0.947	0.007
	CN	14.519	14.693	14.568	3.092	1.019	$\underline{0}$
	ОМе	18.634	18.739	18.773	1.342	0.446	0.400
	CF ₃	13.967	14.007	14.004	1.198	0.315	0.029
	CO ₂ Me	19.498	20.025	20.070	0.402	0.180	0.241
F	7	10.472	10.397	10.236	0.550	0.194	0
	C1	14.269	14.327	14.314	0.361	0.155	0
В	3r	16.555	16.522	16.577	0.277	0.147	0
I		20.290	20.667	20.711	0.144	0.079	0.002
N	Ле	14.191	14.255	14.272	0.019	0.010	0
E	Et	17.886	17.974	17.994	0.020	0.007	0.003
C	ОMe	15.632	15.926	15.937	0.111	0.159	0.210
C	ЭH	11.885	11.896	11.876	0.569	0.367	0.165
N	NH ₂	13.824	13.862	13.858	0.154	0.234	0.162
N	NMe ₂	21.903	22.054	22.114	0.358	0.115	0.070

Table IV. The Values of Polarizability $\alpha~[10^{-24}\,\text{cm}^3]$ and the Descriptor $\mu^2/\alpha~[10^{-12}\,\text{erg}]$

---, observed values.

Table V. $\log(1/K_m)$ Values of Actinidin-Catalyzed Hydrolysis of Substituted Phenyl Hippurates

	$\log(1/K_{\rm m})$	$\sigma_{S^{\circ}(3)}$	$\mu^2/\alpha_{(4)}$	$\sigma_{\pi(4)}^{+a}$
Н	2.77	0	0	0
3-F	3.01	0.051	0	0
3-Cl	3.63	0.066	0	0 1
3-Br	3.64	0.083	0	0
3-I	3.93	0.095	0	0
3-Me	3.26	0.076	0	0
3-tert-Bu	3.66	0.173	0	0
3-CF ₃	3.47	0.142	0	0
3-CN	3.08	0.077	0	0
3-NO ₂	3.53	0.115	0	0
$3,5-Me_2$	3.37	0.123	0	0
3-Me,5-Et	3.52	0.176	0 .	0
3,5-Cl ₂	3.84	0.106	0	0
$3,5-(OMe)_2$	3.60	0.213	0	0
$3,5-(NO_2)_2$	3.90	0.192	0	0
3,4,5-Cl ₃	4.01	0.138	0	-0.070
4-F	2.72	0	0.192	-0.113
4-C1	3.04	0	0.192	-0.070
4-Me	2.95	0	0.009	-0.078
4-COMe	3.47	0	0.621	0
4-CN	3.62	0	1.134	0
4-NO ₂	3.80	0	1.185	0
4-OMe	2.87	0	0.150	-0.281

a) Y. Yukawa and Y. Tsuno, Nippon Kagaku Kaishi, 86, 873 (1965). M. Sawada, M. Ichihara, Y. Yukawa, T. Nakachi and Y. Tsuno, Bull. Chem. Soc. Jpn., 53, 2055 (1980).

$$\log(1/K_{\rm m}) = 0.718\sigma + 0.439\pi'_{(3)} + 3.005
(0.224) (0.174) (0.048)$$
(11)

r = 0.862, F = 28.98, S.D. = 0.206

	log k	σ_{S}	$\mu^2/\alpha_{(4)}$
4-CN	-3.43	0.077	1.134
4-COMe	-3.34	0.142	0.621
3-NO ₂	-1.86	0.130	0
3-Br	-1.26	0.083	0
4-Br	-1.49	0.083	0.176
3-Cl	-1.15	0.066	0
4-Cl	-1.33	0.066	0.192
Н	-0.74	0	0
3-Me	-0.92	0.076	0
4-Me	-1.10	0.076	0.009
4-OMe	-1.36	0.127	0.150

TABLE VI. log k Values of the Reaction between Thiamine and Substituted
Aniline Derivatives with Thiaminase

When we compare Eq. 10 with Eq. 11, the chemical meaning of the former is more explicit.

Rate of the Reaction between Thiamine and Substituted Anilines with Thiaminase⁹⁾ (cf. Table VI)

$$\log k = -9.776\sigma_{S} - 2.004\mu^{2}/\alpha - 2.475\sigma_{\pi(4)}^{+} - 0.506$$

$$(3.756) \quad (0.391) \quad (1.700) \quad (0.629)$$

$$n = 11, \quad r = 0.986, \quad F = 83.6, \quad \text{S.D.} = 0.180$$

$$\log k = -7.920\sigma_{S} - 2.114\mu^{2}/\alpha_{(4)} - 0.529$$

$$(5.294) \quad (0.575) \quad (0.900)$$

$$n = 11, \quad r = 0.963, \quad F = 50.6, \quad \text{S.D.} = 0.276$$

where the relation of $\sigma_{s^{\circ}}$ and μ^2/α is r = 0.217.

Fujita⁹⁾ presented Eq. 14 for the same number of congeners.

$$\log k = 0.685\pi - 1.868\sigma^{-} + 0.558Es_{(4)} - 1.860$$

$$(0.462) \quad (0.565) \quad (0.440) \quad (0.258)$$

$$n = 11, \quad r = 0.906, \quad F = 18.3, \quad \text{S.D.} = 0.433$$

When Eq. 13 is compared with Eq. 14, the former is superior in terms of the number of descriptors, and the correlation coefficient is higher.

In a weak interaction without hydrogen bonding, the two novel descriptors $\sigma_{S^{\circ}}$ and μ^2/α are very effective. The energy of hydrogen bonding is much larger than $E_{\rm dis}$ and $E_{\rm ori}$, and should be treated by using a dummy variable.

References

- 1) Y. Sasaki, T. Takagi and H. Kawaki, Chem. Pharm. Bull., 36, 3743 (1988).
- 2) Y. Sasaki, T. Takagi, Y. Yamasato, A. Iwata and H. Kawaki, Chem. Pharm. Bull., 29, 3073 (1981).
- a) S. W. Benson, "Thermochemical Kinetics," Wiley, New York, 1967; b) S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw and R. Walsh, Chem. Rev., 69, 279 (1969); c)
 D. R. Stull, E. F. Westrum, Jr. and G. C. Sinke, "The Chemical Thermodynamics of Organic Compounds," John Wiley & Sons, Inc., New York, 1969.
- 4) T. Takagi, K. Tange, N. Iwata, Y. Shindo, A. Iwata, T. Katayama, H. Izawa, S. Fujii and Y. Sasaki, Proceedings of the 4th Software Conference, Osaka, 1988, p. 285.
- 5) Y. Sasaki, Unpublished data.
- 6) A. L. McClellan, "Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963.
- 7) a) M. Aida and C. Nagata, Chem. Phys. Letts., 86, 44 (1985); b) Idem, Int. J. Quantum Chem., 29, 1253 (1986).
- 8) A. Carotti, C. Hansch, M. M. Mueller and J. M. Blaney, J. Med. Chem., 27, 1401 (1984).
- 9) T. Fujita, J. Med. Chem., 16, 923 (1973).