Chem. Pharm. Bull. 36(2) 613—620 (1988)

Reaction of Triphenylphosphine Radical Cation with 1,3-Dicarbonyl Compounds: Electrochemical One-Step Preparation of Dioxomethylenetriphenylphosphoranes

HIDENOBU OHMORI,* HATSUO MAEDA, MIE TAMAOKA, and MASAICHIRO MASUI

Faculty of Pharmaceutical Sciences, Osaka University, 1–6 Yamadaoka, Suita, Osaka 565, Japan

(Received July 28, 1987)

Electrochemical oxidation of Ph_3P (1) in MeCN in the presence of 1,3-dicarbonyl compounds, $R^1COCH_2COR^2$ (3), with $HClO_4$ as the supporting electrolyte resulted in the formation of the phosphonium salts, $Ph_3P^+-CH(COR^1)COR^2$ ClO_4^- (4), provided that R^1 and/or R^2 is a phenyl group. On the other hand, electrolysis in CH_2Cl_2 with 2,6-lutidinium perchlorate gave the phosphoranes, $Ph_3P=C(COR^1)COR^2$ (5), directly from 1 and 3 in fair to excellent yields: in this case, R^1 or R^2 need not necessarily be a phenyl group. Thus, the electrolysis is shown to be a convenient method to prepare 5 in a single step. Plausible processes for the formation of 4 and 5 are proposed, involving the reaction of electrochemically generated Ph_3P^{++} with the enol form of 3 as the keystep.

Keywords—triphenylphosphine; 1,3-dicarbonyl compound; dioxomethyltriphenylphosphonium perchlorate; dioxomethylenetriphenylphosphorane; electrochemical oxidation; constant current electrolysis

Triphenylphosphine radical cation [Ph₃P⁺· (2)], generated by one-electron oxidation of Ph₃P (1), has been shown to react with compounds of widely differing nucleophilicity, from benzene to aliphatic amines, to give the corresponding phosphonium salts or products derived from them.¹⁻³⁾ Recently we have reported the preparation of 1-alkenyltriphenylphosphonium salts⁴⁾ and allyltriphenylphosphonium salts⁵⁾ effected by the electrochemical oxidation of 1 in the presence of alkenes and allylsilanes, respectively. As a continuation of our work on the addition reaction of the radical cation 2 with carbon nucleophiles to form P⁺-C bonds, reaction with 1,3-dicarbonyl compounds (3) (see Tables I and II) was examined. Electrolysis of a system composed of 1, 3, and HClO₄ in MeCN gave the phosphonium salts (4), while the phosphoranes (5) were formed in CH₂Cl₂ with 2,6-lutidinium perchlorate (LutClO₄) or tetrafluoroborate (LutBF₄) as a supporting electrolyte (Chart 1). Since phosphoranes of type 5 can be employed as the precursors of acetylenes,^{6,7)} the electrochemical oxidation is expected to have considerable synthetic utility.

CCE: constant current electrolysis

Results and Discussion

The electrolysis was carried out in an undivided cell (see Experimental), unless otherwise stated.

Electrolysis in MeCN

Table I summarizes the results of constant current electrolysis (CCE) of 1 in MeCN containing the dicarbonyl compounds 3 and $HClO_4$. When either of the substituents (R^1 or R^2) in 3 is a phenyl group (3a—3c), the phosphonium salts 4 were obtained in fair yields together with small amounts of the dimer 6. The salts 4 were converted to the corresponding phosphoranes 5 by the action of *tert*-BuOK in MeCN.⁸⁾ In the case of 3 bearing no phenyl group (3d and 3e), $Ph_3P=O$ was formed almost quantitatively.

Since the oxidation potentials of 3 are higher than that of 1 under the experimental conditions (see Fig. 1 for typical examples),⁹⁾ it can be expected that the phosphonium salts 4 are formed *via* the reaction of the radical cation 2 with the enol form of 3 (Chart 2),¹⁰⁾ as suggested for the reaction of 2 with various nucleophiles.¹⁻⁴⁾However, toward the end of the electrolysis when 1 is almost consumed, direct electron transfer from 3 also seems to take place to give the dimer 6 as a by-product. Thus, in a typical experiment, the progress of the electrolysis with 3a was followed by liquid chromatography. At 60% completion of the electrolysis the yield of 6a was only 0.4% based on the initial amount of 3a, while it increased to 3.2 and 4% at 80 and 100% completion, respectively. Dimerization of 1,3-dicarbonyl compounds by electrochemical oxidation has been reported.¹¹⁾

At least two factors can be considered to account for the failure to obtain the phosphonium salts 4 from 3d and 3e. First, the amount of the enol form (see Chart 2) in the bulk of the electrolysis solution will be smaller in the case of 3d and 3e than for 3a-3c. Secondly, at the electrode surface the concentration of 3 with a phenyl group must be higher than that of 3 without the phenyl group, because the former dicarbonyl compounds will be specifically adsorbed on the electrode through the phenyl group 14 as suggested by the depressed voltammetric peak of 1 in the presence of 3a (Fig. 1). Therefore, in the electrolysis with 3d and 3e, the radical cation 2 will react with water, added unavoidably to the medium with $HClO_4$, 15 rather than with the dicarbonyl compounds, leading to the almost quantitative formation of $Ph_3P=O$.

The effects of the supporting electrolyte were examined with 3a as the nucleophile. When LutClO₄ or LutBF₄ was used in place of HClO₄, the phosphorane 5a (instead of 4a) and the dimer 6a were formed¹⁶): with LutBF₄ the yields of 5a and 6a were 15 and 12%, respectively. For the preparation of 5, however, electrolysis in CH₂Cl₂ proved to be preferable (see below). Other supporting electrolytes such as NaClO₄, Bu₄NClO₄, and LiBF₄ did not give satisfac-

	3		Yield $(\%)^{b}$ of		_ Yield (%)c) of
	\mathbb{R}^1	\mathbb{R}^2	4	6	5 from 4
a	Ph	Ph	66	4	72
b	Ph	Me	65	4	81
c	Ph	OEt	62	5	71
d	Me	Me	O^{d}	_	_
e	Me	OEt	0^{d}		

TABLE I. CCE of 1 in the Presence of 3 in the MeCN-HClO₄ System^{ay}

a) General procedure, see Experimental: the ratio of [1]: [3]: [HClO₄] was 1:2:2. b) Isolated yield: for 4 based on 1 and for 6 based on 3. c) Isolated yield based on 4: 4 was refluxed in MeCN containing tert-BuOK under N₂ for 8 h. d) Ph₃P=O was obtained in almost quantitative yield.

$$1 + \text{HClO}_4 \iff \text{Ph}_3\text{PH}^+ + \text{ClO}_4^-$$

$$3 \iff \text{R}^1\text{C}(\text{OH}) = \text{CHCOR}^2$$

$$3'$$

$$1 \stackrel{-e}{\longrightarrow} \text{Ph}_3\text{P}^{+\bullet} \stackrel{+3'}{\longrightarrow} \left[\text{Ph}_3\text{P}^+ - \text{CH} \stackrel{\dot{\mathbf{C}}(\text{OH})\text{R}^1}{\text{COR}^2} \right] \stackrel{-e, -H^+}{\longrightarrow} C$$

$$Chart 2$$

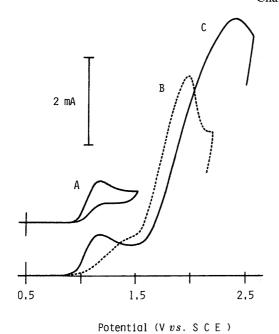


Fig. 1. Cyclic Voltammograms of 1 and 3 in MeCN

A, 1 (11 mmol) and $HCIO_4$ (22 mmol) in MeCN (35 ml); B, A+3a (22 mol); C, A+3d (22 mmol). Conditions: at 27 °C; glassy carbon anode (area = $0.071 \, \text{cm}^2$); voltage sweep rate, $50 \, \text{mV/s}$. SCE, saturated calomel electrode.

TABLE II. Preparation of 5 by CCE of 1 in CH₂Cl₂ Containing 3 and LutClO₄^{a)}

	3		Yield (%) ^{b)}	Conversion of 5 to	
	\mathbb{R}^1	R ²	of 5	acetylene ^{c)} (yield/ $\frac{0}{3}$) ^{d)}	
a	Ph	Ph	$63^{e,f}$	PhC≡CCOPh (97)	
b	Ph	Me	83	$PhC \equiv CCOMe (62), PhCOC \equiv CMe (26)$	
c	Ph	OEt	71	$PhC \equiv CCO_2Et$ (80)	
d	Me	Me	58	<i>g</i>)	
e	Me	OEt	67	h)	
f	MeO	CH_2CO_2Me	30	<i>i</i>)	
g	-(CH ₂) ₃ -		35	j)	
h	$-CH_2C(Me)_2CH_2-$		94	J)	
i	Ph	NHPh	ca. 100	i)	
j	Me	NHPh	83	i)	
k	Ph	CN for COR ²	56	$PhC \equiv CCN (83)$	

a) General procedure, see Experimental. b) Isolated yield based on 1. c) The phosphorane 5 was refluxed in o-dichlorobenzene for 3-8 h. d) Isolated yield based on 5. e) LutBF₄ was used in place of LutClO₄. f) The dimer 6a was obtained in 3% yield based on 3a. g) Not examined, but conversion to MeC \equiv CCOMe has been reported (ref. 6d). h) Not examined. i) Only tarry materials were obtained. j) The reaction of the phosphorane is under investigation.

tory results for the formation of 4 or 5.

Electrolysis in CH₂Cl₂

In contrast to the results in the MeCN-HClO₄ system, CCE in CH₂Cl₂ with LutClO₄ or

Vol. 36 (1988)

LutBF₄ as the supporting electrolyte gave the phosphorane 5 directly from 1 and 3¹⁷: in this case, all of the dicarbonyl compounds 3 reacted with radical cation 2 to afford the products (Table II). Conversion of some of the phosphoranes 5 to acetylenes was examined under conditions somewhat different from those reported⁶) and the results are also included in Table II.

In order to elucidate the role of the supporting electrolyte in the reaction, electrolysis of 1 in CH₂Cl₂ was carried out under several selected conditions, where 3a and 3d were chosen as typical dicarbonyl compounds. When LutClO₄ was used, both of the phosphoranes 5a and 5d were produced as described above (runs 1 and 3 in Table III). With Bu₄NClO₄, on the other hand, the phosphonium salt 4a was formed from 3a, though in rather poor yield (run 2), but no product that had originated from 1 and 3d was obtained (run 4). Since LutClO4 will be easily reduced at the cathode to liberate the free base, 3b,4) these results suggest that (i) the initial product formed from 1 and 3 in CH₂Cl₂ is the phosphonium salt 4, (ii) a weak base generated in situ can effect the conversion of 4 to 5, and (iii) the formation of 4 from 3 without the phenyl group must be assisted by a base. The third view is consistent with the observation that the phosphonium salts 4 were not formed from 3d and 3e in the MeCN-HClO₄ system. The reaction at the cathode in the electrolysis with Bu₄NClO₄ will not be simple. Although quaternary ammonium salts have been reported to produce tertiary amines upon cathodic reduction, 18) such processes would take place at very high negative potentials. Under the present experimental conditions, the discharge of the solvent (CH2Cl2) might occur preferentially, when chloride ion is thought to be liberated. 19) The possibility of the reduction of

Run 1	3 3a	Supporting Electrolysis cell and additive		Yield $(\%)^{b}$ of 4 and 5	
		LutClO ₄	Undivided cell	0	49
2	3a	Bu₄NClO₄	Undivided cell	23	0
3	3d	LutClO ₄	Undivided cell	0	58 ^{c)}
4	3d	Bu_4NClO_4	Undivided cell	0	0
5	3d	Bu ₄ NClO ₄	Divided cell NaHCO ₃ (57 mmol) ^{d)}	0	2
6	3d	Bu ₄ NClO ₄	Divided cell Na ₂ CO ₃ (57 mmol) ^{d)}	0	44

TABLE III. CCE of 1 in the Presence of 3a or 3d in CH₂Cl₂^{a)}

at the anode

$$1 \xrightarrow{-e} 2 \xrightarrow{+3' (R^1 \text{ and/or } R^2 = Ph)} \begin{bmatrix} Ph_3P^+-CH & \dot{C}(OH)R^1 \\ Ph_3P^+-CH & COR^2 \end{bmatrix} \xrightarrow{-e, -H^+} 4$$

$$+3' (R^1 \text{ and } R^2 \neq Ph) +2,6-\text{lutidine, } -H^+ & COR^2 \end{bmatrix} \xrightarrow{-e} 4$$

$$+2,6-\text{lutidine, } -H^+$$

$$4 \xrightarrow{+2,6-\text{lutidine, } -H^+} 5$$

at the cathode

2 LutClO₄
$$\xrightarrow{+2e}$$
 2(2,6-lutidine) + H₂ + 2ClO₄⁻
Chart 3

a) Essentially the same procedure was employed as had been used to obtain the results in Table II. b) Isolated yield based on 1. c) Quoted from Table II. d) Suspended in the anode compartment.

anodically generated species at the cathode cannot be ruled out. In any case, however, it is likely that a base, which acts in a manner similar to 2,6-lutidine, is not produced at the cathode in the electrolysis with Bu₄NClO₄. These arguments are supported by the results obtained on electrolysis with Bu₄NClO₄ in the presence of suspended bases (NaHCO₃ and Na₂CO₃) in a divided electrolysis cell (runs 5 and 6), where participation of cathodically generated species in the anodic reactions is eliminated. The phosphorane 5d was obtained from 3d, and the yield increased with the basicity of the suspended base.

Based on the results described so far, the overall process for the formation of 5 in the CH₂Cl₂-LutClO₄ system is proposed to be as shown in Chart 3. Although the process from 2 to 4 is represented as stepwise reactions, it cannot be distinguished from a process in which further one-electron transfer and the deprotonation take place concurrently with the attack of 3 on the radical cation 2.

It is well known that α -acylphosphoranes, $Ph_3P = C(R)COR'(7)$, are useful intermediates for the synthesis of acetylenes. The preparation of 7 most frequently employed involves the reaction of the Wittig reagents, $Ph_3P = CHR$, with acid halides or acid anhydrides. However, in this method with acid halides, though not always with acid anhydrides, half of the reagent is converted to the phosphonium salt, $Ph_3P^+ - CH_2RX^-(X^- = \text{halide ion or acid anion})$, and the separation of 7 from the salt is sometimes difficult. Since the phosphoranes 5 are representatives of the compounds 7 as precursors of acetylenes, except for the terminal acetylene equivalents reported recently, the electrochemical preparation of 5 described in the present study, involving a simple one-step procedure from 1 under mild conditions, has potential synthetic utility. Furthermore, the phosphoranes such as 5g and 5h are hard to obtain by conventional methods. Studies on the synthetic application of these compounds are in progress.

Experimental

All melting points are uncorrected. Infrared (IR) and proton nuclear magnetic resonance (1 H-NMR) spectra were recorded on JASCO A-202 and Hitachi R-22 spectrometers, respectively. Cyclic voltammetry was carried out as described previously. CCE was performed using a Hokuto Denko HA-301 potentiostat/galvanostat, but the use of a conventional DC power supply (50 V-2A) also seems to be effective. A 50 ml sample tube (diameter, 3.5 cm; height, 7.5 cm) was employed as the undivided electrolysis cell, which was equipped with a graphite plate anode (2×10 cm) and a platinum plate cathode (1×10 cm) through a silicon stopper. A beaker (volume, 50 ml) was used as the divided cell: the cathode compartment was composed of a glass cylinder (diameter, 25 mm) with a sintered glass disk at the bottom, which was suspended in the beaker through a rubber stopper. A solution of Bu₄NClO₄ (0.63 M) in CH₂Cl₂ was placed in the cylinder as the catholyte. The same electrodes as described above were used.

Materials—The phosphine 1 was recrystallized from hexane. 1,3-Dicarbonyl compounds 3a-3j were obtained from commercial sources and were used without further purification. Compound 3k was synthesized by the reported method. 21) LutClO₄ and LutBF₄ were prepared as described previously. 22) MeCN was purified by the method of Kiesele, 23) and CH₂Cl₂ was distilled from P₂O₅. Other chemicals were of reagent grade, and were used without further purification.

General Procedure for the Preparation of 5—A solution of 1 (11 mmol), 3 (22 mmol), and LutClO₄ or LutBF₄ (22 mmol) in CH₂Cl₂ (35 ml) was subjected to CCE (30 mA; current density, 1 mA/cm²) in the undivided cell at ambient temperature until 2 F per mol of 1 had been consumed. The electrolyzed solution was concentrated to ca. 2 ml under reduced pressure below 30 °C. Water (100 ml) was added to the residue and the mixture was extracted with CHCl₃ (3×100 ml). The organic layer, after being dried over anhydrous MgSO₄, was evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel with hexane–AcOEt as an eluant to give the phosphorane 5: the optimum solvent ratio was dependent on the particular phosphorane and was found by thin layer chromatography. Electrolysis in the divided cell was performed by essentially the same procedure.

Dibenzoylmethylenetriphenylphosphorane (**5a**): mp 185—187 °C (from AcOEt–hexane) (lit.^{6d)} 191—192 °C). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1520. NMR (CDCl₃) δ : 6.85—7.90 (25H, m, ArH). *Anal*. Calcd for $C_{33}H_{25}O_2P$: C, 81.80, H, 5.20. Found: C, 81.76; 4.96.

Benzoyltriphenylphosphoranylideneacetone (**5b**): mp 175—178 °C (from AcOEt) (lit. 6d) 172—173 °C). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 1570, 1530. NMR (CDCl₃) δ : 1.86 (3H, s, COCH₃), 7.3—8.0 (20H, m, ArH). *Anal.* Calcd for

C₂₈H₂₃O₂P: C, 79.61; H, 5.49. Found: C, 79.80; H, 5.43.

Ethyl Benzoyltriphenylphosphoranylideneacetate (5c): mp 141—142 °C (from AcOEt) (lit. He holds of the control of the control

Acetyltriphenylphosphoranylideneacetone (**5d**): mp 167—172 °C (from AcOEt–hexane) (lit.^{6d}) 167—169 °C). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1530. NMR (CDCl₃) δ : 2.24 (6H, s, COCH₃), 7.30—7.80 (15H, m, ArH). *Anal*. Calcd for C₂₃H₂₁O₂P: C, 76.65; H, 5.87. Found: C, 76.82; H, 5.84.

Ethyl Acetyltriphenylphosphoranylideneacetate (**5e**): mp 156—159 °C (from AcOEt-hexane) (lit. $^{6a)}$ 152—154 °C). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1650, 1550. NMR (CDCl₃) δ : 0.67 (3H, t, J=8 Hz, CH₃), 2.46 (3H, s, COCH₃), 3.73 (2H, q, J=8 Hz, OCH₂), 7.30—7.80 (15H, m, ArH). HR-MS: Calcd for $C_{24}H_{23}O_{3}P$ (M $^+$) m/z: 390.1386, Cound: 390.1384.

Dimethyl 3-Oxo-2-triphenylphosphoranylideneglutarate (**5f**): mp 129—130 °C (from AcOEt–hexane). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1730, 1660, 1560. NMR (CDCl₃) δ : 3.12 (3H, s, CO₂CH₃), 3.70 (3H, s, CO₂CH₃), 3.84 (2H, s, CH₂), 7.25—7.85 (15H, m, ArH). *Anal.* Calcd for C₂₅H₂₃O₅P: C, 69.12; H, 5.34. Found: C, 69.37; H, 5.19.

2-Triphenylphosphoranylidenecyclohexa-1,3-dione (**5g**): mp 210.5—214 °C (from hexane). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 1550. NMR (CDCl₃) δ : 1.90—2.20 (2H, m, -CH₂-), 2.30—2.55 (4H, m, COCH₂ × 2), 7.30—7.85 (15H, m, ArH). *Anal.* Calcd for C₂₄H₂₁O₂P: C, 77.41; H, 5.68. Found: C, 77.61; H, 5.72.

5,5-Dimethyl-2-triphenylphosphoranylidenecyclohexa-1,3-dione (5h): mp 209—212 °C (from hexane). IR $\nu_{\max}^{\text{CHCl}_3}$ cm $^{-1}$: 1550. NMR (CDCl₃) δ : 1.13 (6H, s, CH₃ × 2), 2.30 (4H, s, COCH₂ × 2), 7.20—7.80 (15H, m, ArH). *Anal.* Calcd for $C_{26}H_{25}O_2P$: C, 77.98; H, 6.29. Found: C, 78.24; H, 6.05.

Benzoyltriphenylphosphoranylideneacetanilide (5i): mp 188—193 °C (from AcOEt). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 1620, 1520. NMR (CDCl₃) δ : 6.75—7.75 (26H, m, ArH). *Anal.* Calcd for C₃₃H₂₆NO₂P: C, 79.34; H, 5.25; N, 2.80. Found: C, 79.56; H, 5.08; N, 2.74.

Acetyltriphenylphosphoranylideneacetanilide (**5j**): mp 180—184 °C (from AcOEt). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1610, 1530. NMR (CDCl₃) δ : 1.38 (3H, s, CH₃), 6.80—7.85 (20H, m, ArH). *Anal*. Calcd for C₂₈H₂₃NO₂P: C, 77.05; H, 5.31; N, 3.21. Found: C, 77.22; H, 5.48; N, 3.11.

2-Cyano-2-triphenylphosphoranylideneacetophenone (5k): mp 209—213 °C (from AcOEt–hexane)(lit. 6b) 208 °C). IR $_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 2170, 1550. NMR (CDCl₃) δ : 7.30—8.10 (20H, m, ArH). *Anal*. Calcd for C₂₇H₂₀NOP: C, 79.99; H, 4.97; N, 3.45. Found: C, 80.28; H, 4.82; N, 3.48.

Electrolysis in the MeCN-HClO₄ System—A solution of 1 (11 mmol), 3 (22 mmol), and 70% HClO₄ (22 mmol as HClO₄) in MeCN (35 ml) was subjected to CCE as described above. Caution: HClO₄ should be added slowly to the mixture of 1 and 3 in MeCN with stirring. The electrolyzed solution was concentrated to ca. 10 ml under reduced pressure below 30 °C. Ether (300 ml) was added to the residue. The phosphonium salt 4 separated out as colorless crystals, which were filtered off, washed with ether, and recrystallized from MeCN-ether. The combined filtrate was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel with hexane–AcOEt (10:1) as an eluant to give the dimer 6.

(Dibenzoylmethyl)triphenylphosphonium Perchlorate (4a): mp 218—222 °C. IR $v_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 1690 (w), 1670 (w), 1650 (w), 1590, 1105. NMR (CD₃CN) δ : 7.30—8.10 (26H, m, ArH and CH). Anal. Calcd for C₃₃H₂₆ClO₆P: C, 67.76; H, 4.48; Cl, 6.06. Found: C, 68.00; H, 4.38; Cl, 5.88.

(Acetylbenzoylmethyl)triphenylphosphonium Perchlorate (**4b**): mp 213—218 °C. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 1630, 1600, 1105. NMR (CD₃CN) δ : 2.10 (3H, s, COCH₃), 7.30—8.10 (21H, m, ArH and CH). *Anal.* Calcd for C₂₈H₂₄ClO₆P: C, 64.31; H, 4.63; Cl, 6.78. Found: C, 64.29; H, 4.48; Cl, 6.79.

(Benzoylcarboethoxymethyl)triphenylphosphonium Perchlorate (4c): mp 173 °C. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 1730, 1670, 1100. NMR (CD₃CN) δ : 0.90 (3H, t, J=7 Hz, CH₃), 4.05 (2H, q, J=7 Hz, CO₂CH₂), 6.95 (1H, d, J=13 Hz, P⁺-CH), 7.30—8.10 (20H, m, ArH). *Anal*. Calcd for C₂₉H₂₆ClO₇P: C, 62.99; H, 4.74. Found: C, 62.79; H, 4.82.

1,1,2,2-Tetrabenzoylethane (**6a**): mp 219—222 °C (from AcOH) (lit.²⁴) 211—213 °C). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1690. NMR (CDCl₃) δ : 6.80 (2H, s, >CH–CH<), 7.15—7.55 (12H, m, ArH), 7.78—7.95 (8H, m, ArH). *Anal*. Calcd for $C_{30}H_{22}O_4$: C, 80.70; H, 4.97. Found: C, 80.63; H, 4.79.

1,2-Diacetyl-1,2-dibenzoylethane (6b): A mixture of keto and enol forms. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1720 and 1670 (keto form), 1600 (enol form). NMR (CDCl₃) δ : 2.03 (6H, s, CH₃×2), 6.90 (2H, s, CH-CH</br>
8.20 (10H, m, ArH). From the NMR spectrum, the ratio of [keto]/[enol] was estimated to be 1/5.4.

Diethyl 2,3-dibenzoylsuccinate (**6c**) was a mixture of *meso* and *dl* forms (1:1) at the time of isolation. After recrystallization from hexane, however, only the *meso* form was obtained: mp 128 °C (lit.²⁵⁾ 126 °C). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1740, 1680. NMR (CDCl₃) δ : 0.95 (6H, t, J=9 Hz, CH₃ × 2), 3.95 (4H, q, J=9 Hz, OCH₂ × 2), 5.58 (2H, s, CH-CH<), 7.44—7.60 (6H, m, ArH), 8.10—8.22 (4H, m, ArH). *Anal*. Calcd for C₂₂H₂₂O₆: C, 69.10; H, 5.80. Found: C, 69.09; H, 5.85.

Conversion of 4 to 5—A mixture of 4 (3.6 mmol) and tert-BuOK (18 mmol) in dry MeCN (20 ml) was refluxed with stirring under N_2 for 8 h. The reaction mixture, after addition of aqueous NH_4Cl (10%, 50 ml), was extracted with $CHCl_3$ (3 × 50 ml). The extract was treated as described above to give the corresponding phosphorane 5.

Preparation of Acetylenes—A solution of 5 (1 mmol) in o-dichlorobenzene (5 ml) was refluxed for 3—8 h. The reaction mixture was subjected to column chromatography on silica gel (hexane-AcOEt, 10:1) to give the

corresponding acetylene. The products are all known compounds^{6b,d)} and gave the expected analytical results.

Acknowledgement This work was supported in part by a Grant-in-Aid for Scientific Research (60570987) from the Ministry of Education, Science and Culture.

References and Notes

- 1) G. Schiavon, S. Zecchin, G. Cogoni, and G. Bontempelli, J. Electroanal. Chem., 48, 425 (1973).
- Yu. M. Kargin, E. V. Nikitin, O. V. Parakin, G. V. Romanov, and A. N. Pudovik, *Dokl. Akad. Nauk SSSR*, 241, 131 (1978) [Chem. Abstr., 89, 119655v (1978)]; Yu. M. Kargin, E. V. Nikitin, G. V. Romanov, O. V. Parakin, T. G. Levshina, and A. N. Pudovik, Zh. Obshch. Khim., 48, 743 (1978) [Chem. Abstr., 89, 43623k (1978)]; Yu. M. Kargin, E. V. Nikitin, O. V. Parakin, Yu. A. Ignatév, A. S. Romakhin, G. V. Romanov, T. Ya. Stepanova, and A. N. Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim., 1980, 939 [Chem. Abstr., 93, 56824j (1980)]; Yu. M. Kargin, E. V. Nikitin, O. V. Parakin, G. V. Romanov, and A. N. Pudovik, Phosphorus and Sulfur, 8, 55 (1980).
- 3) a) H. Ohmori, S. Nakai, and M. Masui, J. Chem. Soc., Perkin Trans. 1, 1978, 1333; H. Ohmori, S. Nakai, M. Sekiguchi, and M. Masui, Chem. Pharm. Bull., 28, 910 (1980); H. Ohmori, S. Nakai, and M. Masui, ibid., 28, 2247 (1980); H. Ohmori, S. Nakai, H. Miyasaka, and M. Masui, ibid., 30, 4192 (1982); b) H. Ohmori, K. Sakai, N. Nagai, Y. Mizuki, and M. Masui, ibid., 33, 373 (1985).
- 4) H. Ohmori, T. Takanami, and M. Masui, Tetrahedron Lett., 26, 2199 (1985); idem, Chem. Pharm. Bull., 35, 4960 (1987).
- 5) T. Takanami, K. Suda, H. Ohmori, and M. Masui, Chem. Lett., 1987, 1335.
- 6) a) G. Märkl, Chem. Ber., 94, 3005 (1961); b) S. T. D. Gough and S. Trippett, J. Chem. Soc., 1962, 2333; idem, ibid., 1964, 543; c) N. Petragnani and G. Schill, Chem. Ber., 97, 3293 (1964); d) P. A. Chopard, R. J. G. Searle, and F. H. Devitt, J. Org. Chem., 30, 1015 (1965); e) H. J. Bestmann and C. Geismann, Justus Liebigs Ann. Chem., 1977, 282; Y. Z. Huang, Y. Shen, W. Ding, and J. Zheng, Tetrahedron Lett., 22, 5283 (1981); Y. Kobayashi, T. Yamashita, K. Takahashi, H. Kuroda, and I. Kumadaki, ibid., 23, 343 (1982); Y. Shen, Y. Lin, and Y. Xin, ibid., 26, 5137 (1985).
- 7) A. L. Braga, J. V. Commasseto, and N. Petragnani, Tetrahedron Lett., 25, 1111 (1984); idem, Synthesis, 1984, 240.
- 8) The conversion of 4 to 5 can be effected with a weaker base such as 2,6-lutidine or Na₂CO₃ as suggested by the results described below. However, since the electrolysis in CH₂Cl₂ was found to be preferable for the preparation of 5 (Table II), further modification of the method was not attempted.
- 9) The voltammetric peak potentials of 3 in MeCN (0.1 m LutClO₄ or LutBF₄) were as follows (the values were little affected by addition of HClO₄): 3a, 1.71; 3b, 1.80; 3c, 1.77; 3d, 1.90; 3e, 1.92; 3f, 2.1; 3g, 1.50; 3h, 1.60; 3i, 1.63; 3j, 1.65; 3k, 2.1 V vs. SCE. (concn. of 3, 2 mmol; voltage sweep rate, 50 mV/s). The values for 3a and 3d do not coincide with those read from Fig. 1. This discrepancy is due to the difference in the concentration of the substrate in the two experiments.
- 10) The voltammetric peak potential of 1 in MeCN containing 2 mol eq of HClO₄, which is ca. 140 mV more positive than that of 1 without the acid, agrees well with that of Ph₃PH⁺ ClO₄⁻ prepared separately, indicating that 1 is almost completely protonated under the electrolysis condition [cf. H. Ohmori, H. Maeda, K. Konomoto, K. Sakai, and M. Masui, Chem. Pharm. Bull., 35, 4473 (1987)]. However, the exact nature of the initial electrode process generating the radical cation 2 under the experimental conditions is not clear, though the overall process is considered to be as depicted in Chart 2. A voltammetric study of the oxidation of 1 in acidic MeCN is in progress and will be reported elsewhere.
- 11) M. Laćan, I. Tabaković, and M. Vukićvić, Croat. Chem. Acta, 45, 465 (1973); H. W. VandenBorn and D. H. Evans, J. Am. Chem. Soc., 96, 4296 (1974).
- 12) D. J. Sardella, D. H. Heinert, and B. L. Shapiro, J. Org. Chem., 34, 2817 (1969) and references cited therein.
- 13) The [enol]/[keto] ratios in the solution for electrolysis as estimated by H-NMR spectroscopy were 11 and 1.3 for 3a and 3d, respectively.
- 14) L. Eberson and K. Nyberg, Tetrahedron, 32, 2185 (1976) and references cited therein.
- 15) Since 70% HClO₄ obtained from a commercial source was used without any treatment, the reaction medium inevitably contained a small amount of water.
- 16) The electrolyzed solution was treated according to the procedure employed for the work-up of the solution from electrolysis carried out in CH₂Cl₂ (see Experimental and note 17).
- 17) It was confirmed that, in a designed mixture of the phosphonium salt 4a (2 mmol) and LutBF₄ (22 mmol) in CH₂Cl₂ (35 ml), 4a was recovered in 86% yield by the work-up described in the experimental section, indicating that formation of 4 in the electrolysis solution as the major product would have been detected if it had actually occurred.
- 18) L. Horner, "Organic Electrochemistry," 2nd ed., ed. by M. M. Baizer and H. Lund, Marcel Dekker, Inc., New

- York and Basle, 1983, pp. 730-733.
- 19) H. Lund, ref. 18, p. 210.
- 20) H. Ohmori, A. Matsumoto, and M. Masui, J. Chem. Soc., Perkin Trans. 2, 1980, 347 and references cited therein.
- 21) J. B. Dorsch and S. M. McElvain, J. Am. Chem. Soc., 54, 2960 (1932).
- 22) H. Ohmori, T. Takanami, H. Shimada, and M. Masui, Chem. Pharm. Bull., 35, 2558 (1987).
- 23) H. Kiesele, Anal. Chem., 52, 2230 (1980).
- 24) M. P. Cava, M. Behforouz, G. E. M. Husbands, and M. Srinivasan, J. Am. Chem. Soc., 95, 2561 (1973).
- 25) H. Stetter and F. Jonas, Synthesis, 1981, 626.