Chemotaxonomy of the Genus Euchresta. III. Three New Flavonoids in the Roots of Euchresta japonica

Mizuo Mizuno,* Koh-ichi Tamura, Toshiyuki Tanaka, and Munekazu Iinuma

Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan. Received June 20, 1988

Three new flavonoids isolated from the roots of *Euchresta japonica*, designated as euchrenones a_4 , b_4 and b_5 , were identified as 5,7-dihydroxy-6,8-di(γ , γ -dimethylallyl)-[6'''',6''''-dimethylapyrano(2'''',3'''':4',3')]flavanone, 5,7-dihydroxy-2'-methoxy-4',5'-methylenedioxy-6,8-di(γ , γ -dimethylallyl)isoflavone and 5,7,2'-trihydroxy-4',5'-methylenedioxy-6,8-di(γ , γ -dimethylallyl)isoflavone by means of spectral analysis.

Keywords Euchresta japonica; Leguminosae; prenylated flavanone; prenylated isoflavone; euchrenone a_4 ; euchrenone b_5 ; euchrenone b_5

The roots of Euchresta japonica (Leguminosae) have been used in Japan as an antiinflammatory, antiarrhythmic, anticancer and antiulcer agent in place of Chinese crude drug derived from Sophora tonkinensis. 1,2) Many flavonoids with relevant biological activities have been isolated by Komatsu and his co-workers.3) The chemical constituents of E. japonica have been further investigated by us not only to search for substances with medicinal potency but also to characterize chemotaxonomically the genus Euchresta which consists of four or five species; E. japonica (western Japan), E. formosana (Taiwan), E. horsfieldii (Java, Thailand and southern China), E. tubulosa (China), and E. trifoliolata (China).4) The last species has been suggested to be the same as E. japonica. 5) The flavonoids of the roots so far isolated by us are prenylated flavanones (euchrenones a_1-a_3 , 6 isoflavones (euchrenones b_1-b_3) and coumaronochromone (euchretin A).8) In a continuation of our studies on the constituents, three new minor flavonoids, designated as euchrenone a₄ (flavanone) and euchrenones b₄ and b₅ (isoflavones), were isolated from the roots. We described the structure elucidation of the new flavonoids in this paper.

Euchrenone a_4 (1), $C_{30}H_{34}O_5$ (M⁺ at m/z 474) was isolated as a colorless oil from a fraction eluted with

benzene on silica gel column chromatography of a methanol extract of Euchresta japonica HOOK. f. ex REGEL, and gave positive results with both the ferric chloride and the magnesium-hydrochloride tests. In the proton nuclear magnetic resonance (¹H-NMR) spectrum, two double doublets (1H each, J=17.1 and 3.1 Hz, and J=17.1 and 12.9 Hz) at 2.77 and 3.03 ppm, and a double doublet (1H, J=12.9 and 3.1 Hz) at 5.26 ppm were assignable to the protons at C-3 and C-2 of the flavanone skeleton, respectively. Furthermore the ¹H-NMR spectrum showed the presence of a dimethylpyran ring [1.60 $(2 \times Me)$, 5.64 and 6.33 (1H each, $J = 10 \,\text{Hz}$, CH = CH -)], two γ , γ dimethylally groups [1.72 (2 × Me), 1.75 and 1.82 (Me), 3.33 and 3.45 ppm (2H each, d, J = 6.7 Hz, $2 \times \text{CH}_2$), 5.19, 5.22 (1H each, d, J=6.7 Hz, CH=C)] and two hydroxy groups (6.32 and 12.32 ppm). One singlet at 12.32 ppm was assigned to a chelated hydroxy group at C-5. A typical ABX system at 6.78 (1H, d, J=8.4 Hz), 7.03 (1H, d, J=2.2 Hz) and 7.15 ppm (1H, dd, J=8.4 and 2.2 Hz) ppm indicated the presence of the C-3',4' disubstituted B ring moiety. No signals corresponding to any aromatic hydrogen on the A ring moiety was observed in the ¹H-NMR spectrum. As shown in Fig. 1, in the mass spectrum (MS), the prominent fragments of m/z 288

© 1989 Pharmaceutical Society of Japan

R=Me
$$m/z$$
 449 (7.1)
R=H m/z 435 (2.5)

-Me

R=Me m/z 421 (92.6)
R=H m/z 407 (29.6)

-C₃H₆

-C₄H₇

R=Me m/z 409 (69.4)

R=H m/z 395 (31.2)

RDA

R=Me m/z 464 (100)

R=H euchrenone b₅
 m/z 450 (100)

R=Me m/z 176 (24.0)

R=H m/z 162 (24.6)

based on the A ring and m/z 186 based on the B ring giving the base peak m/z 171 by successive demethylation, indicated the presence of a dimethylpyran moiety on the B ring. Consequently, the structure of euchrenone a_4 was established to be 5,7-dihydroxy-6,8-di- $(\gamma,\gamma$ -dimethylallyl)-[6'''',6''''-dimethylpyrano (2'''',3'''':4',3')]flavanone[2,3-dihydro-5,7-dihydroxy-6,8 $(\gamma,\gamma$ -dimethylallyl)-2-(2,2-dimethylchromene-6-yl)-4-(4H)chromenone]. Euchrenone a_4 is considered to be a derivative of euchrenone a_3 .

Fig. 2

Euchrenone b_4 (2), $C_{27}H_{28}O_7$ (M⁺ at m/z 464), was isolated from a fraction eluted with C₆H₆-EtOAc as a pale yellow oil. In the ¹H-NMR spectrum, a sharp singlet due to the proton at C-2 of the isoflavone skeleton was observed at 7.86 ppm. Furthermore, the ¹H-NMR spectrum showed the presence of two γ, γ -dimethylallyls [1.74, 1.77, 1.83, 1.85] (Me), 3.46-3.48 (4H, m, $2 \times CH_2$), 5.22, 5.25 ppm (1H) each, br t, J=7.0 Hz, -CH=C, one methoxy (3.74 ppm), one methylenedioxy (5.96 ppm) and two hydroxy groups (6.29 and 13.14 ppm). One singlet could be assigned to a chelated hydroxy group at C-5. Two aromatic proton signals at 6.62 and 6.97 ppm (singlets) were assigned to the protons at C-3' and C-6', which indicated that 2 had a 2',4',5'-trioxygenated B ring moiety. In the MS, the prominent fragment of m/z 176 (Fig. 2) supported the presence of a methoxy group and a methylenedioxygroup on the B ring. Consequently, the structure of euchrenone b₄ was concluded to be 5,7-dihydroxy-2'-methoxy-4',5'methylenedioxy-6,8-di(γ , γ -dimethylallyl)isoflavone [5,7-dihydroxy-6,8-di(γ , γ -dimethylallyl)-3-(2-methoxy-4,5-methylenedioxyphenyl)-4-(4H)-chromenone].

Euchrenone b₅ (3), C₂₆H₂₆O₇ (M⁺ 450), was isolated from a more polar fraction than 2. The ¹H-NMR spectrum of 3 was very similar to that of 2. But no signal due to a methoxy group was observed. In the MS, the fragments based on the B ring were smaller than those of 2 by 14

mass units (Fig. 2). These data indicated that the substituent at C-2' in the B ring was a hydroxy group. Therefore the structure of euchrenone b_5 was characterized as 5,7,2'-trihydroxy-4',5'-methylenedioxy-6,8-di(γ,γ -dimethylallyl)isoflavone [5,7-dihydroxy-6,8-di(γ,γ -dimethylallyl)-3-(2-hydroxy-4,5-methylenedioxyphenyl)-4(4H)-chromenonel.

The structures of other minor flavonoids in *E. japonica* are being investigated in relation with those of *E. formosana* and *E. horsfieldii*.

Experimental

The dried roots (1.3 kg) of *E. japonica*, collected in Miyazaki prefecture, were extracted successively with $n\text{-}C_6H_{12}$, C_6H_6 , CHCl₃, EtOAc and MeOH. The C_6H_6 extract was concentrated *in vacuo*, and then eluted with benzene and benzene–AcOEt (10:1) from a silica gel column. A fraction eluted with benzene was repeatedly purified by preparative thin layer chromatography (TLC) using n-hexane–EtOAc (8:1) as the solvent to give 1 (10 mg). A benzene–EtOAc (10:1) fraction was also purified by a similar method to give 2 (8 mg) and 3 (5 mg).

Euchrenone a₄ (1) $C_{30}H_{34}O_5$, MW 474, a colorless oil. EIMS m/z (rel. int.): 474 (69.3), 459 (35.9), 419 (16.5), 288 (8.5), 273 (32.5), 233 (32.0), 186 (8.5), 177 (27.5), 171 (100). ¹H-NMR (CDCl₃) δ: 1.60 (6H, br s, 2 × Me), 1.72 (6H, br s, 2 × Me), 1.75, 1.82 (3H each, s, Me), 2.77 (1H, dd, J=17.1, 3.1 Hz, H-3), 3.03 (1H, dd, J=17.1, 12.9 Hz, H-3), 3.33, 3.45 (2H each, br d, J=6.7 Hz, Ar-CH₂-CH=Cζ), 5.19, 5.22 (1H each, br t, J=6.7 Hz, -CH₂-CH=Cζ), 5.26 (1H, dd, J=12.9, 3.1 Hz, H-2), 5.64 (1H, d, J=10 Hz, H-5''''), 6.32 (1H, s, C₇-OH), 6.33 (1H, d, J=10 Hz, H-4'''''), 6.78 (1H, d, J=8.4 Hz, H-5'), 7.03 (1H, d, J=2.2 Hz, H-2'), 7.15 (1H, dd, J=8.4, 2.2 Hz, H-6'), 12.32 (1H, s, C₅-OH).

Euchrenone b₄(2) $C_{27}H_{28}O_7$, MW 464, a pale yellow oil. EIMS m/z (rel.int.): 464 (100), 449 (7.1), 421 (92.6), 409 (52.4), 393 (32.5), 365 (52.9), 353 (93.6), 288 (2.6), 189 (25.1), 176 (20.4), 162 (27.0). 1H -NMR (CDCl₃) δ : 1.74, 1.77, 1.83, 1.85 (3H each, brs, Me), 3.46—3.48 (4H, m, $2 \times -CH_2 - CH = C <$), 3.74 (3H, s, OMe), 5.22, 5.25 (1H each, brt, J = 7.0 Hz, $-CH_2CH_2 = C <$), 5.96 (2H, s, $-OCH_2O$ -), 6.29 (1H, s, C_7 -OH), 6.62 (1H, s, H-3'), 6.69 (1H, s, H-6'), 7.86 (1H, s, H-2), 13.14 (1H, s, C_5 -OH).

Euchrenone b₅ (3) $C_{26}H_{26}O_7$, MW 450, a pale yellow oil. EIMS m/z (rel. int.): 450 (100), 435 (2.5), 407 (29.6), 395 (31.2), 379 (21.7), 351 (23.0), 339 (55.8), 288 (7.9), 189 (57.1), 162 (24.6). 1 H-NMR (CDCl₃) δ: 1.73, 1.77, 1.83, 1.86 (3H each, br s, Me), 3.45—3.48 (4H, m, $2 \times -CH_2CH = C < > 5.24 - 5.26$ (2H, m, $2 \times -CH_2CH = C < > 5.96$ (2H, s, $-OCH_2O - > 6.26$ (1H, s, OH), 6.56 (1H, s, H-3'), 6.87 (1H, s, H-6'), 8.02 (1H, s, H-2), 13.10 (1H, s, C_5 -OH).

References

- 1) X. Huang, Acta Phytotax. Sinica, 22, 486 (1984).
- T. Mizuno, M. Iinuma, and M. Mizuno, Ann. Proc. Gifu Pharm. Univ., 36, 26 (1987).
- Y. Shirataki, M. Komatsu, I. Yokoe, and A. Manaka, Chem. Pharm. Bull., 29, 3033 (1981);
 Y. Shirataki, A. Manaka, I. Yokoe, and M. Komatsu, Phytochemistry, 21, 2959 (1982);
 Y. Shirataki, I. Yokoe, M. Endo, and M. Komatsu, Chem. Pharm. Bull., 33, 444 (1985).
- H. Ohashi and K. Sohma, J. Fac. Sci. Univ. Tokyo, III, 10, 207 (1970).
- 5) H. Ohashi, Shokubutsugaku Zasshi, 91, 297 (1978).
- M. Mizuno, K. Tamura, T. Tanaka, and M. Iinuma, Phytochemistry, 27, 1831 (1988).
- M. Mizuno, K. Tamura, T. Tanaka, and M. Iinuma, Phytochemistry, 27, 2975 (1988).
- M. Mizuno, K. Tamura, T. Tanaka, and M. Iinuma, Heterocycles, 27, 2047 (1988).