## FERN CONSTITUENTS: FOUR NEW ONOCERADIENES ISOLATED FROM Lemmaphyllum microphyllum Presl

Kazuo MASUDA, Kenji SHIOJIMA and Hiroyuki AGETA\*

Showa College of Pharmaceutical Sciences, 5-1-8 Tsurumaki, Setagaya-ku, Tokyo 154, JAPAN

From the fresh whole plants of Lemmaphyllum microphyllum, family Polypodiaceae, we isolated, along with  $\alpha$ -onoceradiene (1) and  $\beta$ -onoceradiene (2), four new onoceroid hydrocarbons, onocera-7,14-diene (3), onocera-7,13-diene (4), onocera-7,14(27)-diene (5) and onocera-8,14(27)-diene (6). Thier structures were established by spectral and chemical methods.

KEYWORDS triterpenoid; onocera-7,14-diene; onocera-7,13-diene; onocera-7,14(27)-diene; onocera-8,14(27)-diene; onocera-8,14(27)-diene; onoceroid; fern constituent; Lemmaphyllum microphyllum; Polypodiaceae

We have reported various kinds of triterpenoid hydrocarbons having a variety of carbon skeletons belonging to the hopane, dammarane, baccharane,  $^{1}$  lupane and oleanane series, and to the onocerane, serratane and polypodane groups from Lemmaphyllum microphyllum PRESL (Mame-dzuta, Polypodiaceae) and L. microphyllum var. obovatum (HARR.) C. CHR. (Ryukyu-mame-dzuta). As a result of further investigation of a n-hexane extract from the fresh whole plants (21.4 kg) of Lemmaphyllum microphyllum collected in Shizuoka Prefecture in June, four new onoceroid hydrocarbons were isolated along with  $\alpha$ -onoceradiene (onocera-8(26),14(27)-diene, 1), the main hydrocarbon of this fern, and  $\beta$ -onoceradiene (2). This communication deals with the structures of these compounds.

The extract was chromatograghed on Si gel with n-hexane to give the first mono-ene fractions and then more polar two hydrocarbon fractions. The latter fractions showed several peaks having rather fast retention times on GC.<sup>6)</sup> After the crystal of 1 was removed, mostly by recrystallization from acetone, the oily fractions were chromatograghed repeatedly on AgNO<sub>3</sub>-Si gel to afford five crystalline (1, 2, 3, 5 and 6) and one oily compound (4).

Compound 2,7) mp 160-162°,  $[\alpha]_D$  +122.2° (CHCl<sub>3</sub>, c=1.0),  $Rt_R$  1.60, was obtained in an estimated yield of 0.00001% of the dried materials. 2 had the molecular formula  $C_{30}H_{50}$ , as shown by high resolution MS spectrum

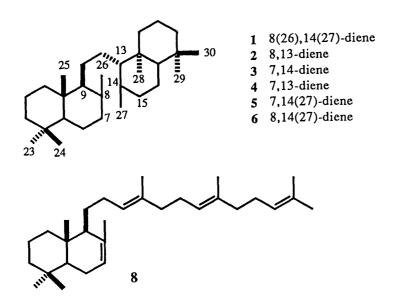



Table I.  $^{1}\text{H-Chemical Shifts}$  ( $\delta$ ) in CDCl $_{3}$  Solution (on JEOL GX 270 at 270 MHz)

|   |       |       | Olefinic protons |       |       |       |       |       |                                      |
|---|-------|-------|------------------|-------|-------|-------|-------|-------|--------------------------------------|
|   | C-23  | C-24  | C-25             | C-26  | C-27  | C-28  | C-29  | C-30  | attached to C[ ]                     |
| 1 | 0.868 | 0.788 | 0.634            | 4.544 | 4.544 | 0.634 | 0.788 | 0.868 |                                      |
|   |       |       |                  | 4.808 | 4.808 |       |       |       | •                                    |
| 2 | 0.882 | 0.836 | 0.964            | 1.644 | 1.644 | 0.964 | 0.836 | 0.882 |                                      |
| 3 | 0.858 | 0.876 | 0.738            | 1.700 | 1.700 | 0.738 | 0.876 | 0.858 | [7,14] 5.380bs $(w_{1/2h}=10)$       |
| 4 | 0.854 | 0.872 | 0.728            | 1.778 | 1.596 | 0.936 | 0.834 | 0.886 | [7] 5.390bs $(w_{1/2h}^{1/2h} = 10)$ |
| 5 | 0.860 | 0.872 | 0.706            | 1.696 | 4.534 | 0.670 | 0.802 | 0.872 | [7] 5.368bs $(w_{1/2h}^{1/2h}=10)$   |
|   |       |       |                  |       | 4.820 |       |       |       | 1/211                                |
| 6 | 0.884 | 0.832 | 0.926            | 1.590 | 4.656 | 0.658 | 0.794 | 0.870 |                                      |
|   |       |       |                  |       | 4.838 |       |       |       |                                      |
| 8 | 0.850 | 0.870 | 0.740            | 1.684 | 1.604 | 1.604 | 1.604 | 1.684 | [13,17,21] 5.10-5.12 (J=6.3)         |
|   |       |       | 4                |       |       |       |       |       | [7] 5.376bs $(w_{1/2h}=10)$          |

Table II.  $^{13}$ C-Chemical Shifts ( $\delta$ ) in CDCl<sub>3</sub> Solution (on JEOL GX 270 at 68MHz)

|             | Carbon number |       |       |       |       |       |       |       |       |      |  |  |  |  |
|-------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|------|--|--|--|--|
|             | 1             | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10   |  |  |  |  |
| 1           | 39.0          | 19.5  | 42.3  | 33.6  | 55.7  | 24.5  | 38.5  | 149.2 | 58.0  | 39.6 |  |  |  |  |
| 2           | 37.7          | 19.3  | 41.9  | 33.5  | 51.9  | 19.3  | 34.1  | 126.0 | 141.7 | 39.1 |  |  |  |  |
| 3           | 39.4          | 18.9  | 42.4  | 33.0  | 56.3  | 23.9  | 122.2 | 135.6 | 50.3  | 36.7 |  |  |  |  |
| 4           | 39.5          | 19.0  | 42.4  | 33.0  | 56.9  | 23.9  | 122.1 | 135.6 | 50.3  | 37.0 |  |  |  |  |
| 5           | 39.2          | 19.0  | 42.4  | 33.0  | 55.6  | 23.9  | 121.9 | 135.8 | 50.3  | 36.7 |  |  |  |  |
| 6           | 37.2          | 19.2  | 41.9  | 33.6  | 52.0  | 19.2  | 33.7  | 125.4 | 141.6 | 39.0 |  |  |  |  |
| 8           | 39.3          | 18.9  | 42.4  | 33.0  | 54.4  | 23.9  | 122.1 | 135.6 | 50.3  | 36.8 |  |  |  |  |
| <del></del> | 11            | 12    | 13    | 14    | 15    | 1,6   | 17    | 18    | 19    | 20   |  |  |  |  |
| 1           | 22.6          | 22.6  | 58.0  | 149.2 | 38.5  | 24.5  | 55.7  | 39.6  | 39.0  | 19.5 |  |  |  |  |
| 2           | 28.8          | 28.8  | 141.7 | 126.0 | 34.1  | 19.3  | 51.9  | 39.1  | 37.3  | 19.3 |  |  |  |  |
| 3           | 30.0          | 30.0  | 50.3  | 135.6 | 122.2 | 23.9  | 56.3  | 36.7  | 39.4  | 18.9 |  |  |  |  |
| 4           | 27.9          | 31.5  | 141.7 | 125.8 | 33.8  | 19.2  | 51.9  | 38.8  | 37.6  | 19.2 |  |  |  |  |
| 5           | 26.0          | 25.3  | 57.4  | 149.0 | 38.4  | 24.5  | 55.7  | 39.6  | 39.2  | 19.5 |  |  |  |  |
| 6           | 28.0          | 24.3  | 59.1  | 149.2 | 38.6  | 24.6  | 55.7  | 39.9  | 39.1  | 19.5 |  |  |  |  |
| 8           | 27.3          | 30.3  | 124.9 | 134.9 | 39.8  | 26.9  | 124.3 | 134.9 | 39.8  | 26.8 |  |  |  |  |
|             | 21            | 22    | 23    | 24    | 25    | 26    | 27    | 28    | 29    | 30   |  |  |  |  |
| 1           | 42.3          | 33.6  | 33.6  | 21.7  | 14.5  | 106.2 | 106.2 | 14.5  | 21.7  | 33.6 |  |  |  |  |
| 2           | 41.9          | 33.5  | 33.5  | 21.8  | 20.9  | 20.6  | 20.6  | 20.9  | 21.8  | 33.5 |  |  |  |  |
| 3           | 42.4          | 33.0  | 33.2  | 21.9  | 13.6  | 22.6  | 22.6  | 13.6  | 21.9  | 33.2 |  |  |  |  |
| 4           | 41.8          | 33.4  | 33.2  | 21.9  | 13.6  | 22.9  | 20.2  | 20.3  | 21.7  | 33.4 |  |  |  |  |
| 5           | 42.2          | 33.6  | 33.2  | 22.0  | 13.6  | 22.5  | 106.3 | 14.7  | 21.8  | 33.6 |  |  |  |  |
| 6           | 42.3          | 33.6  | 33.4  | 21.8  | 20.3  | 20.0  | 106.0 | 14.6  | 21.7  | 33.4 |  |  |  |  |
| 8           | 124.5         | 131.1 | 33.2  | 21.9  | 13.6  | 22.2  | 16.2  | 16.0  | 17.7  | 25.7 |  |  |  |  |

 $(M^+ m/z \, 410.3908)$ . The <sup>1</sup>H-NMR spectrum (Table I) of 2 showed only four tertiary methyl and no olefinic proton signals. Although 2 has thirty carbons in the molecule, the <sup>13</sup>C-NMR spectrum (Table II) of 2 showed fifteen carbon signals including two olefinic singlet carbon signals. This indicated that 2 has a tetracyclic ring system and a  $C_2$  symmetry axis, which, like 1, is located between C-11 and C-12. Finally the  $\beta$ -onoceradiene structures of 2 was

determined by identifying it with the parent hydrocarbon derived from onoceranoxide (7), by treating it with  $BF_3$ -etherate in ether.<sup>1)</sup>

Compound 3, mp 155-156°,  $[\alpha]_D$  +3.1° (CHCl<sub>3</sub>, c=0.4),  $Rt_R$  1.66,  $C_{30}H_{50}$  (M<sup>+</sup> 410.3895) was obtained in 0.0002% yield. The <sup>1</sup>H-NMR spectrum of 3 (Table I) indicated the presence of a  $\Delta^7$ -double bond in the molecule, since there were olefinic proton ( $\delta$  5.380bs,  $w_{1/2h}$  10Hz) and olefinic methyl proton ( $\delta$  1.664bs) signals. Also the EI low resolution MS spectrum showed major typical fragments: m/z (int.) 286 (15), 271 (17), and 204 (100), which are the same as fragments observed in taraxer-14-ene.<sup>8)</sup> The symmetrical structure of 3 was proved by overlapped signals of the left and right counterparts on the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra. And all signals of the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 3 were very similar to those of the counterpart of  $\gamma$ -polypodatetraene(8) obtained from Aspidiaceous ferns.<sup>3)</sup> Therefore compound 3 is considered to be onocera-7,14-diene.

Compound 4, oil,  $[\alpha]_D$  +87.8° (CHCl<sub>3</sub>, c=0.7), Rt<sub>R</sub> 1.63, C<sub>30</sub>H<sub>50</sub> (M<sup>+</sup> 410.3910) was obtained in a 0.0005 % yield. Since there were eight tertiary methyl signals and one olefinic proton signal in the <sup>1</sup>H-NMR spectrum (Table I) and thirty carbon signals in the <sup>13</sup>C-NMR spectrum (Table II), the compound 4 is asymmetrical. Both the <sup>1</sup>H- and <sup>13</sup>C-signals of the left counterpart of 4 are very similar to those of 3 and the right counterpart of 4 is also similar to 2, so compound 4 appears to be onocera-7,13-diene.

Compound 5, mp 83-85°C,  $[\alpha]_D$  +15.6° (CHCl<sub>3</sub>, c=0.5),  $Rt_R$  1.45,  $C_{30}H_{50}$  (M+ 410.3924) and compound 6, mp 174-175°C,  $[\alpha]_D$  +94.8° (CHCl<sub>3</sub>, c=0.6),  $Rt_R$  1.42,  $C_{30}H_{50}$  (M+ 410.3889) were obtained in yields of 0.00085 and 0.001% respectively. The <sup>1</sup>H-NMR spectrum of 5 showed signals of a  $\Delta^7$ -double bond proton ( $\delta$  5.368 bs  $w_{1/2h}$  10 Hz) and exomethylene protons ( $\delta$  4.534bs and 4.820bs). But the <sup>1</sup>H-NMR spectrum of 6 showed signals of exomethylene protons ( $\delta$  4.656bs and 4.838bs) only. In contrast with 1, 2 and 3, there were thirty carbons signals in their <sup>13</sup>C-NMR (Table II) because of thier assymetrical structures. As the <sup>13</sup>C-NMR signals of the right counterparts of 5 and 6 match each other and are similar to those of 1, and also the left counterpart of 5 and 6 were similar to those of 3 and 2 respectively, compounds 5 and 6 appear to be onocera-7,14(27)-diene and onocera-8,14(27)-diene respectively. To comfirm the structure, 5 was compared with the parent hydrocarbon derived from onocera-7,14(27)-diene-3,21-dione, a component of *Lansium domesticum*, 9) by Wolff-Kishner-Barton reduction. The physico-chemical data of 5 were identical with those of the derived hydrocarbon in all respects.

Finally the chemical relationships between these onoceradienes have been established by treating each compound with 20% BF<sub>3</sub>-etherate in ether at 25°C for 24 h. 2 was obtained from 1, 3, 5 and 6, all of which were identified by GC-MS and <sup>1</sup>H-NMR, and 4 was obtained from 5 and 6.

It is interesting to note that in addition to  $\alpha$ -onoceradiene, five possible biosynthetic isomers of onoceradienes have been found in *Lemmaphyllum microphyllum* as natural products. The percentages of every compounds in total onoceradienes (140 mg) were: 1 (41.6%); 2 (0.3%); 3 (4.3%); 4 (10.7%); 5 (19.4%) and 6 (23.7%).

## REFERENCES AND NOTES

- 1) K. Masuda, K. Shiojima, and H. Ageta, Chem. Pharm. Bull., 31, 2530 (1983).
- 2) H. Ageta, K. Shiojima, and K. Masuda, Chem. Pharm. Bull., 30, 2272 (1982).
- 3) K. Shiojima, Y. Arai, K. Masuda, T. Kamada, and H. Ageta, Tetrahedron Lett., 51, 5733 (1983).
- 4) Our observations in chemical constituents of this fern indicate that this fern must be a species independent from Lemmaphyllum microphyllum.
- 5) We have proposed the term "onoceroid" for triterpenoids biosynthesized from squalene by both-end cyclization.<sup>2</sup>)
- 6) GC were run on a Hitachi 163 with Chromosorb G HP coated with SE-30 (1.4%) at 260°C in a flow of nitrogen (20 ml/min). Cholestane was used as an internal reference; its retention time was set at 3.0 min.
- 7)  $[\alpha]_D$  and  $^{13}$ C-NMR of 2 were taken with a synthetic sample because of an insufficient experimental yield.
- 8) H. Ageta and Y. Arai, Phytochemistry, 22, 1801, (1983).
- 9) K. Habaguchi, M. Watanabe, Y. Nakadaira, K. Nakanishi, A. K. Kiang, and F. Y. Lin, Tetrahedron Lett., 1968, 3731. We are grateful to Professor Y. Hayashi (Osaka City University) and Professor M. Nishizawa (Tokushima Bunri University) for the gift of onocera-7,14(27)-diene-3,21-dione.

(Received November 18, 1988)