Studies on Hypolipidemic Agents. IV. 3-[4-(Phenylthio)benzoyl]propionic Acid Derivatives

Kazuya Kameo,* Yumiko Asami, Kunio Ogawa, Tohru Matsunaga, Shiuji Saito, Kazuyuki Tomisawa and Kaoru Sota Research Center, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Ohmiya, Saitama 330, Japan. Received October 17, 1988

2-Acetylthio-3-benzoylpropionic acid derivatives having two benzene rings or condensed-ring moieties were prepared, and tested for hypolipidemic activity in normal rats. Some of these compounds were active. 2-Acetylthio-3-[4-(phenylthio)benzoyl]propionic acid (10) and its derivatives seemed to have the most potent hypocholesterolemic activities. Compound 10 showed strong activity, especially in cholesterol-fed rats.

Keywords 3-[4-(phenylthio)benzoyl]propionic acid; 2-acetylthio-3-[4-(4-chlorophenoxy)benzoyl]propionic acid; hypolipidemic activity; structure-activity relationship; clofibrate

In the previous work, 1) we found that 2-acetylthio-3-(4-phenoxybenzoyl)propionic acids (I) (Chart 1) have hypo-

$$X - \bigcirc O -$$

cholesterolemic activities, and studies of chemically modified derivatives having the diphenyl ether moiety indicated that the partial structure –CH₂CH(SAc)COOH is the most favorable feature for the activity. During studies on antirheumatic agents,²⁾ we synthesized 2-acetylthio-3-benzoylpropionic acid derivatives, having one benzene ring moiety, and found that these derivatives lack hypolipidemic activities. It is known that some hypolipidemic compounds,

© 1989 Pharmaceutical Society of Japan

Table I. Physical and Biological Properties of 2-Acetylthio-3-benzoylpropionic Acids

$$R \longrightarrow SAc$$

		D /	Formula ^{a)}	mp (°C)	Hypolipidemic activity rank ^{c)}		
No.	R	R′		(Recrystn. ^{b)} solvent)	Choles- terol	Triglye eride	
1,	\bigcirc	н	$C_{18}H_{16}O_{4}S$	156—159 (A-H)	3	3	
2	CH₂-	Н	$C_{19}H_{18}O_4S$	110—113 (A-H)	2	1	
.3	CH₂CH₂-	Н	$C_{20}H_{20}O_{4}S$	129130 (AE-H)	2	0	
4	CH ₂ O-	Н	$C_{19}H_{18}O_5S$	132.5—133.5 (D-H)	0	0	
5	Cl-CH2O-	Н	C ₁₉ H ₁₇ ClO ₅ S	128—129.5 (D-H)	1	3	
6	. O _N o-	Н	C ₁₇ H ₅ NO ₅ S	138—139 (D-H)	0	0	
7	CH₂O-	н	C ₁₈ H ₇ NO ₅ S	153—155 (D-H)	0	0	
8	(H)-	Н	$C_{18}H_{22}O_4S$	91—93 (E-H)	0	0	
9	H-CH ₂ O-	Н	$C_{19}H_{24}O_{5}S$	88—89 (E-H)	1	0	
10	⊘ s-	Н	$C_{18}H_{16}O_4S_2$	116.5—118.5 (AE-H)	4	2	
11	⊘ -s-	Et	$C_{20}H_{20}O_4S_2$	71—72.5 (D–H)	3	0	
12	O S	Н	$C_{18}H_{16}O_{5}S_{2}$	Oil ^{d)}	0	0	
13	© \$-	Et	$C_{20}H_{20}O_5S_2$	Oil ^{d)}	1	0	
14		Н	$C_{18}H_{16}O_6S_2$	143—144 (AE-H)	0	0	
15	CI-CONH-	Н	C ₁₉ H ₁₆ ClNO ₅ S	202 (dec.) (THF)	1	0	
16	CI-O-CONH-	Et	$C_{21}H_{20}CINO_5S$	142—144 (D-H)	0	0	
17	CONHCH ₂ CH ₂ -	Н	C ₂₁ H ₂₁ NO ₅ S	183—184 (dec.)	0	0	
18	CONHCH ₂ CH ₂ -	Et	C ₂₃ H ₃₅ NO ₅ S	(THF) 140—141 (AE)	0	0	
190	CI-CONHCH2CH3-	Н	C ₂₁ H ₂₀ ClNO ₅ S	186—187 (A)	0	0	
20 (CI-CONHCH2CH2-	Et	C ₂₃ H ₂₄ ClNO ₅ S	106—108 (AE)	0	0	
21	SO ₂ NH-	Н	C ₁₈ H ₁₇ NO ₆ S ₂	167—169 (dec.)	0	0	
22	CI-CONHCH ₂ -	Н	C ₂₀ H ₁₈ NO ₅ S	(AE) Oil ^{d)}	0	0	

a) All compounds were analyzed for C, H and N: analytical results obtained for these elements were within $\pm 0.4\%$ of calculated values. b) A=acetone, AE=AcOEt, D=CH₂Cl₂, E=Et₂O, H=n-hexane. c) Reduction levels were calculated as percentages with respect to the control value; less than 9% reduction=0, 10-19% reduction=1, 20-29% reduction=2, 30-39% reduction=3, 40-49% reduction=4. d) Purified by column chromatography.

TABLE II. Physical and Biological Properties of 2-Acetylthio-3-benzoylpropionic Acids

$$A \longrightarrow O$$
 $COOR$ SAc

No.	Α	R	Formula ^{a)}	mp (°C)	Hypolipidemic activity rank ^{c)}			
	^			(Recrystn.b) solvent)		Triglyc- eride		
23	MeO OO	Н	C ₁₇ H ₁₆ O ₅ S	115—117 (D-H)	0	0		
24		Н	$C_{16}H_{14}O_4S$	149—150 (AE)	0	0		
25		Н	$C_{16}H_{14}O_{4}S$	118—120 (AE)	0	0		
26		Н	C ₁₅ H ₁₅ NO ₅ S	193—195 (AE)	0	0		
27	O N	Et	C ₁₇ H ₁₉ NO ₅ S	133—135 (D–H)	0	1		
28		Н	C ₁₄ H ₁₃ NO ₅ S	134—137 (AE)	0	0		
29	o LNO	Et	C ₁₆ H ₁₇ NO ₅ S	103—107 (AE-H)	0	1		
30		Н	$C_{18}H_{14}O_{4}S_{2}$	160 (dec.) (AE-H)	3	1		
31	\bigcirc	Et	$C_{20}H_{18}O_4S_2$	96—98 (E-H)	2	0		
32	\bigcirc	Н	$C_{18}H_{14}O_4S_2$	167.5—168 (AE-H)	2	3		
33	0.0	Н	C ₁₈ H ₁₄ O ₅ S	157—159 (AE-H)	3	0		
34	0.0	Et	$C_{20}H_{18}O_5S$	Oil ^{d)}	1	0		
35		Н	$C_{20}H_{19}NO_5S$	189—191 (A)	1	0		
36	O N Ac	Et	C ₂₂ H ₂₁ NO ₅ S	104—108 (AE-H)	1	0		
37	O Ne	Н	C ₁₉ H ₁₇ NO ₄ S	185—188 (dec.) (A)	0	0		
38	○ N Me	Et	C ₂₁ H ₂₁ NO ₄ S	104—105 (AE-H)	0	0		
a—d) See footnotes in Table I.								

—d) See footnotes in Table I.

such as Beclobrate,³⁾ Bezafibrate⁴⁾ and Itanoxone,⁵⁾ have two benzene rings in their structure. Since it was considered that the presence of two benzene rings is important for the hypolipidemic activity, in an attempt to find a new hypolipidemic agent we investigated a series of 2-acetylthio-3-benzoylpropionic acid derivatives having two benzene rings and condensed-ring moieties in place of the diphenyl ether

TABLE III. Physical and Biological Properties of 3-(4-Phenylthiobenzoyl)propionic Acids

$$X - \bigcirc S - \bigcirc R^1 \bigcirc COOR^3$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		mp (°C)		pidemic y rank ^{c)}
39 Me H SAC H C ₁₉ H ₁₈ O ₄ S ₂ 127—129 2 (D-H) 40 Cl H SAC H C ₁₈ H ₁₅ ClO ₄ S ₂ 111—114 4 (D-H) 11 H H SAC Et (D-H) 41 H H SAC iso-Pr C ₂₁ H ₂₂ O ₄ S ₂ 82—82.5 1 (E-H) 42 H H SAC n-Bu C ₂₂ H ₂₄ O ₄ S ₂ 50—51.5 1 (E-H) 43 H H SAC CH ₂ Ph C ₂₄ H ₂₆ O ₄ S ₂ 126—127 0 (AE-H) 44 H H SCOEt H C ₁₈ H ₁₈ O ₄ S ₂ 94—95 2 (E-H) 45 H H SCOEt Et C ₂₁ H ₂₂ O ₄ S ₂ 126—127 0 (AE-H) 46 H H SCOPh H C ₂₃ H ₁₈ O ₄ S ₂ 128—129 2 (AE-H) 47 H H SH H C ₁₆ H ₁₄ O ₃ S ₂ 146—147 3 (AE-H) 48 H H SH Et C ₁₈ H ₁₈ O ₃ S ₂ 49—50 1 (E-H) 49 H H SMe H C ₁₇ H ₁₆ O ₃ S ₂ 110—111 3 (D-H) 50 H H SEt H C ₁₈ H ₁₈ O ₃ S ₂ 84—86 3 (E-H) 51 H H S-iso-Pr H C ₁₉ H ₂₀ O ₃ S ₂ 124—125 1 (E-H) 52 H H OAC H C ₁₈ H ₁₆ O ₅ S 122—124 2 (AE) 53 H H OH H C ₁₆ H ₁₄ O ₄ S 135—137 0 (AE) 54 H H NHAC Et C ₂₀ H ₂₁ NO ₄ S 87—88 1 (E) 55 H SAC H H C ₁₈ H ₁₆ O ₄ S ₂ 109—111 1 (E-H) 57 H SH H Et C ₁₈ H ₁₈ O ₃ S ₂ Oild 2 S8—88 58 H SAC H H C ₁₈ H ₁₆ O ₄ S ₂ 109—110 2 (E-H) 59 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oild 1 2 (E-H) 59 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oild 1 0 (E-H) 59 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oild 1 0 (E-H)	No.	х	R ¹	R²	R³	Formula ^{a)}	(Recrystn.b) solvent)		Triglyc- eride
39 Me H SAC H $C_{19}H_{18}O_{4}S_{2}$ $127-129$ 2 $(D-H)$ 40 Cl H SAC H $C_{18}H_{15}ClO_{4}S_{2}$ $111-114$ 4 $(D-H)$ 11 H H SAC Et $(D-H)$ 3 (EH) 41 H H SAC iso-Pr $C_{21}H_{22}O_{4}S_{2}$ 82-82.5 1 (EH) 42 H H SAC n -Bu $C_{22}H_{24}O_{4}S_{2}$ 50-51.5 1 (EH) 43 H H SAC $CH_{2}Ph$ $C_{25}H_{22}O_{4}S_{2}$ 126-127 0 (AE-H) 44 H H SCOEt H $C_{18}H_{18}O_{4}S_{2}$ 94-95 2 (E-H) 45 H H SCOEt Et $C_{21}H_{22}O_{4}S_{2}$ 128-129 2 (AE-H) 46 H H SCOPh H $C_{23}H_{18}O_{4}S_{2}$ 128-129 2 (AE-H) 47 H H SH H $C_{16}H_{14}O_{3}S_{2}$ 146-147 3 (AE-H) 48 H H SH Et $C_{18}H_{18}O_{3}S_{2}$ 49-50 1 (E-H) 49 H H SMC H $C_{17}H_{16}O_{3}S_{2}$ 110-111 3 (D-H) 50 H H SEt H $C_{18}H_{18}O_{3}S_{2}$ 84-86 3 (E-H) 51 H H S-iso-Pr H $C_{19}H_{20}O_{3}S_{2}$ 124-125 1 (E-H) 52 H H OAC H $C_{18}H_{16}O_{5}S$ 122-124 2 (AE) 53 H H OH H $C_{16}H_{14}O_{4}S_{2}$ 135-137 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_{4}S_{2}$ 150-151 2 (D-H) 55 H SAC H Et $C_{18}H_{18}O_{3}S_{2}$ 00id 2 2 58 H SAC H H $C_{18}H_{16}O_{4}S_{2}$ 109-110 1 2 (E-H) 57 H SH H Et $C_{18}H_{18}O_{3}S_{2}$ 00id 2 2 58 H SAC H H $C_{18}H_{16}O_{4}S_{2}$ 00id 2 (E-H) 59 H SAC H Et $C_{20}H_{21}O_{4}S_{2}$ 0id 1 0 0 (E-H)	10	н	н	SAc	Н			4	2
40 CI H SAC H $C_{18}H_{15}ClO_4S_2$ $111-114$ 4 $(D-H)$ 11 H H SAC EI 41 H H SAC iso-Pr $C_{21}H_{22}O_4S_2$ $82-82.5$ 1 $(E-H)$ 42 H H SAC n-Bu $C_{22}H_{24}O_4S_2$ $50-51.5$ 1 $(E-H)$ 43 H H SAC CH ₂ Ph $C_{24}H_{22}O_4S_2$ $126-127$ 0 $(AE-H)$ 44 H H SCOEt H $C_{18}H_{18}O_4S_2$ $94-95$ 2 $(E-H)$ 45 H H SCOPh H $C_{23}H_{12}O_4S_2$ $128-129$ 2 $(AE-H)$ 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ $128-129$ 2 $(AE-H)$ 47 H H SH Et $C_{16}H_{14}O_3S_2$ $146-147$ 3 $(AE-H)$ 48 H H SH Et $C_{18}H_{18}O_3S_2$ $49-50$ 1 $(E-H)$ 49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $122-124$ 2 (AE) 52 H H OAC H $C_{18}H_{16}O_3S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 H SAC $C_{18}H_{16}O_4S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{21}O_4S_2$ Oil^{40} 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{21}O_4S_2$ Oil^{40} 2 $(E-H)$ 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ Oil^{40} 2 $(E-H)$						$C_{19}H_{18}O_4S_2$	127—129	2	3
11 H H SAC Et 41 H H SAC iso-Pr C ₂₁ H ₂₂ O ₄ S ₂ 82—82.5 1 42 H H SAC iso-Pr C ₂₁ H ₂₂ O ₄ S ₂ 82—82.5 1 43 H H SAC iso-Pr C ₂₂ H ₂₄ O ₄ S ₂ 50—51.5 1 44 H H SAC iso-Pr C ₂₂ H ₂₄ O ₄ S ₂ 50—51.5 1 45 H H SAC CH ₂ Ph C ₂₂ H ₂₂ O ₄ S ₂ 126—127 0 46 H H SCOEt H C ₁₈ H ₁₈ O ₄ S ₂ 94—95 2 47 H H SH H C ₁₆ H ₁₄ O ₃ S ₂ 146—147 3 48 H H SH Et C ₁₈ H ₁₈ O ₃ S ₂ 49—50 1 49 H H SMe H C ₁₇ H ₁₆ O ₃ S ₂ 110—111 3 40 H SEt H C ₁₈ H ₁₈ O ₃ S ₂ 128—129 1 41 H S-iso-Pr H C ₁₉ H ₂₀ O ₃ S ₂ 124—125 1 42 H H OAC H C ₁₈ H ₁₆ O ₅ S 122—124 2 43 H H NHAC Et C ₂₀ H ₂₁ NO ₄ S 87—88 1 44 H H SH C ₁₆ H ₁₄ O ₄ S ₂ 150—151 2 45 H H OAC H C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 46 H H SH H C ₁₆ H ₁₄ O ₄ S ₂ 150—151 2 47 H H SH H C ₁₆ H ₁₄ O ₄ S ₂ 150—151 2 48 H H SH C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 49 H H SH C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 49 H H SH C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 49 H H SH C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 49 H H SH C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 49 H H SH C ₁₈ H ₁₆ O ₄ S ₂ 109—111 1 40 (E-H) 41 H H SH C ₁₆ H ₁₄ O ₄ S ₂ 109—111 1 42 (E-H) 43 H H SH H Et C ₁₈ H ₁₆ O ₄ S ₂ 109—110 2 44 H H NHAC Et C ₂₀ H ₂₀ O ₄ S ₂ Oil ⁶⁰ 2 45 H SAC H H C ₁₈ H ₁₆ O ₄ S ₂ 109—110 2 46 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oil ⁶⁰ 1 47 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oil ⁶⁰ 1 48 H SAC H H C ₁₉ H ₁₈ O ₄ S ₂ Oil ⁶⁰ 1 49 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oil ⁶⁰ 1 40 H SCOEt H H C ₁₉ H ₁₈ O ₄ S ₂ Oil ⁶⁰ 1									
11 H H SAC Et 41 H H SAC iso-Pr $C_{21}H_{22}O_4S_2$ $82-82.5$ 1 42 H H SAC iso-Pr $C_{21}H_{22}O_4S_2$ $82-82.5$ 1 42 H H SAC n -Bu $C_{22}H_{24}O_4S_2$ $80-51.5$ 1 43 H H SAC $C_{12}H_{12}O_4S_2$ $126-127$ 0 44 H H SCOEt H $C_{18}H_{18}O_4S_2$ $94-95$ 2 45 H H SCOEt Et $C_{21}H_{22}O_4S_2$ $126-127$ 0 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ $94-95$ 2 47 H H SH H $C_{16}H_{14}O_3S_2$ $146-147$ 3 48 H H SH Et $C_{18}H_{18}O_3S_2$ $49-50$ 1 49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 51 H H OAC H $C_{18}H_{16}O_3S_2$ $110-111$ 3 52 H H OAC H $C_{18}H_{16}O_3S_2$ $124-125$ 1 62-H) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 57 H SH H Et $C_{18}H_{16}O_4S_2$ $150-151$ 2 58 H SAC H H $C_{18}H_{16}O_4S_2$ $109-110$ 2 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{40} 2 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{40} 2 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{40} 0 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ Oil^{40} 1	40	Cl	Н	SAc	Н	$C_{18}H_{15}ClO_4S_2$		4	4
41 H H SAC iso-Pr $C_{21}H_{22}O_4S_2$ $82-82.5$ 1 (E-H) 42 H H SAC n -Bu $C_{22}H_{24}O_4S_2$ 50-51.5 1 (E-H) 43 H H SAC CH_2Ph $C_{25}H_{22}O_4S_2$ 126-127 0 (AE-H) 44 H H SCOEt H $C_{18}H_{18}O_4S_2$ 94-95 2 (E-H) 45 H H SCOEt Et $C_{21}H_{22}O_4S_2$ 128-129 2 (AE-H) 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ 128-129 2 (AE-H) 47 H H SH Et $C_{16}H_{14}O_3S_2$ 146-147 3 (AE-H) 48 H H SH Et $C_{18}H_{18}O_3S_2$ 49-50 1 (E-H) 49 H H SMe H $C_{17}H_{16}O_3S_2$ 110-111 3 (D-H) 50 H H SEt H $C_{18}H_{18}O_3S_2$ 124-125 1 (E-H) 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ 124-125 1 (E-H) 52 H H OAC H $C_{18}H_{16}O_3S$ 122-124 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ 135-137 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ 87-88 1 (E) 55 H SAC $C_{18}H_{16}O_4S_2$ 150-151 2 (D-H) 56 H SH H Et $C_{18}H_{16}O_4S_2$ 109-111 1 (E-H) 57 H SH H Et $C_{18}H_{16}O_4S_2$ 109-110 2 (E-H) 58 H SAC H H $C_{18}H_{16}O_4S_2$ 109-110 2 (E-H) 59 H SAC H Et $C_{20}H_{20}O_4S_2$ 0il ⁶⁰ 2 2 (B-H) 59 H SAC H Et $C_{20}H_{20}O_4S_2$ 0il ⁶⁰ 1 0 (E-H)	11		t.i	840	E+		(D-n)	3	0
42 H H SAC n -Bu $C_{22}H_{24}O_4S_2$ $50-51.5$ 1 $(E-H)$ 43 H H SAC CH_2Ph $C_{25}H_{22}O_4S_2$ $126-127$ 0 $(AE-H)$ 44 H H SCOEt H $C_{18}H_{18}O_4S_2$ $94-95$ 2 $(E-H)$ 45 H H SCOPh H $C_{23}H_{18}O_4S_2$ $128-129$ 2 $(AE-H)$ 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ $128-129$ 2 $(AE-H)$ 47 H H SH Et $C_{18}H_{18}O_3S_2$ $146-147$ 3 $(AE-H)$ 48 H H SH Et $C_{18}H_{18}O_3S_2$ $146-147$ 3 $(AE-H)$ 49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $124-125$ 1 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_3S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 H SAC $C_{18}H_{16}O_4S_2$ $150-151$ 2 $(D-H)$ 56 H SH H Et $C_{18}H_{16}O_4S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{60} 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{60} 1 $(E-H)$ 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ Oil^{60} 1 $(E-H)$						C,,H,,O4S,	82-82.5		0
43 H H SAC CH ₂ Ph C ₂₈ H ₂₂ O ₄ S ₂ 126—127 0 (AE-H) 44 H H SCOEt H C ₁₈ H ₁₈ O ₄ S ₂ 94—95 2 (E-H) 45 H H SCOEt Et C ₂₁ H ₂₂ O ₄ S ₂ 128—129 2 (AE-H) 46 H H SCOPh H C ₂₃ H ₁₈ O ₄ S ₂ 128—129 2 (AE-H) 47 H H SH H C ₁₆ H ₁₄ O ₃ S ₂ 146—147 3 (AE-H) 48 H H SH Et C ₁₈ H ₁₈ O ₃ S ₂ 49—50 1 (E-H) 49 H H SMe H C ₁₇ H ₁₆ O ₃ S ₂ 110—111 3 (D-H) 50 H H SEt H C ₁₈ H ₁₈ O ₃ S ₂ 84—86 3 (E-H) 51 H H S-iso-Pr H C ₁₉ H ₂₀ O ₃ S ₂ 124—125 1 (E-H) 52 H H OAC H C ₁₈ H ₁₆ O ₅ S 122—124 2 (AE) 53 H H OH H C ₁₆ H ₁₄ O ₄ S 135—137 0 (AE) 54 H H NHAC Et C ₂₀ H ₂₁ NO ₄ S 87—88 1 (E) 55 H SAC C ₁₈ H ₁₆ O ₄ S ₂ 150—151 2 (D-H) 57 H SH H Et C ₁₈ H ₁₈ O ₃ S ₂ Oil ^d 2 58 H SAC H H C ₁₈ H ₁₆ O ₄ S ₂ 109—111 1 (E-H) 59 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ 91 0 (E-H)	•-					21 22 7 2	(E-H)		
43 H H SAC CH ₂ Ph $C_{25}H_{22}O_4S_2$ $126-127$ 0 $(AE-H)$ 44 H H SCOEt H $C_{18}H_{18}O_4S_2$ $94-95$ 2 $(E-H)$ 45 H H SCOEt Et $C_{21}H_{22}O_4S_2$ $56-57$ 3 $(E-H)$ 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ $128-129$ 2 $(AE-H)$ 47 H H SH H $C_{16}H_{14}O_3S_2$ $146-147$ 3 $(AE-H)$ 48 H H SMe H $C_{18}H_{18}O_3S_2$ $49-50$ 1 $(E-H)$ 49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_5S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 H SAC $C_{18}H_{16}O_4S_2$ $150-151$ 2 $(D-H)$ 56 H SH H Et $C_{18}H_{18}O_3S_2$ Oil^{d_0} 2 2 2 3 3 4 4 4 4 4 5 4 5 4 4 5 4 5 5 5 6 6 6 6 6 6 6 6 6 6	42	Н	Н	SAc	n-Bu	$C_{22}H_{24}O_4S_2$		1	0
(AE-H) 44 H H SCOEt H C ₁₈ H ₁₈ O ₄ S ₂ 94-95 2 (E-H) 45 H H SCOEt Et C ₂₁ H ₂₂ O ₄ S ₂ 56-57 3 (E-H) 46 H H SCOPh H C ₂₃ H ₁₈ O ₄ S ₂ 128-129 2 (AE-H) 47 H H SH H C ₁₆ H ₁₄ O ₃ S ₂ 146-147 3 (AE-H) 48 H H SH Et C ₁₈ H ₁₈ O ₃ S ₂ 49-50 1 (E-H) 49 H H SMe H C ₁₇ H ₁₆ O ₃ S ₂ 110-111 3 (D-H) 50 H H SEt H C ₁₈ H ₁₈ O ₃ S ₂ 84-86 3 (E-H) 51 H H S-iso-Pr H C ₁₉ H ₂₀ O ₃ S ₂ 124-125 1 (E-H) 52 H H OAC H C ₁₈ H ₁₆ O ₅ S 122-124 2 (AE) 53 H H OH H C ₁₆ H ₁₄ O ₄ S 135-137 0 (AE) 54 H H NHAC Et C ₂₀ H ₂₁ NO ₄ S 87-88 1 (E) 56 H SH H H C ₁₆ H ₁₄ O ₃ S ₂ 109-111 1 (E-H) 57 H SH H Et C ₁₈ H ₁₆ O ₄ S ₂ 109-110 2 (E-H) 59 H SAC H Et C ₂₀ H ₂₀ O ₄ S ₂ Oil ⁶ 1 (E-H) 60 H SCOEt H H C ₁₉ H ₁₈ O ₄ S ₂ 91 0 (E-H)					CII DI	C II O S	, ,	0	0
44 H H SCOEt H $C_{18}H_{18}O_4S_2$ 94—95 2 (E-H) 45 H H SCOEt Et $C_{21}H_{22}O_4S_2$ 56—57 3 (E-H) 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ 128—129 2 (AE-H) 47 H H SH H $C_{16}H_{14}O_3S_2$ 146—147 3 (AE-H) 48 H H SH Et $C_{18}H_{18}O_3S_2$ 49—50 1 (E-H) 49 H H SMe H $C_{17}H_{16}O_3S_2$ 110—111 3 (D-H) 50 H H SEt H $C_{18}H_{18}O_3S_2$ 84—86 3 (E-H) 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ 124—125 1 (E-H) 52 H H OAC H $C_{18}H_{16}O_3S$ 122—124 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ 135—137 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ 87—88 1 (E) 55 H SH H Et $C_{18}H_{16}O_4S_2$ 150—151 2 (D-H) 57 H SH H Et $C_{18}H_{16}O_4S_2$ 109—111 1 (E-H) 57 H SH H Et $C_{18}H_{16}O_4S_2$ 109—111 1 (E-H) 58 H SAC H Et $C_{20}H_{20}O_4S_2$ 0160 2 (E-H) 59 H SAC H Et $C_{20}H_{20}O_4S_2$ 0110 1 (E-H) 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ 91 0 (E-H)	43	Н	Н	SAc	CH ₂ Ph	$C_{25}H_{22}O_4S_2$		U	U
45 H H SCOEL Et $C_{21}H_{22}O_4S_2$ 56—57 3 (E-H) 46 H H SCOPh H $C_{23}H_{18}O_4S_2$ 128—129 2 (AE-H) 47 H H SH H $C_{16}H_{14}O_3S_2$ 146—147 3 (AE-H) 48 H H SH Et $C_{18}H_{18}O_3S_2$ 49—50 1 (E-H) 49 H H SMe H $C_{17}H_{16}O_3S_2$ 110—111 3 (D-H) 50 H H SEt H $C_{18}H_{18}O_3S_2$ 84—86 3 (E-H) 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ 124—125 1 (E-H) 52 H H OAC H $C_{18}H_{16}O_3S$ 122—124 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ 135—137 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ 87—88 1 (E) 55 H SH H H $C_{16}H_{16}O_4S_2$ 150—151 2 (D-H) 56 H SH H H $C_{16}H_{16}O_4S_2$ 150—151 2 (D-H) 57 H SH H Et $C_{18}H_{16}O_4S_2$ 109—111 1 (E-H) 57 H SH H Et $C_{18}H_{16}O_4S_2$ 109—111 1 (E-H) 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil ⁶⁰ 2 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil ⁶⁰ 1 60 H SCOEL H H $C_{19}H_{18}O_4S_2$ Oil ⁶⁰ 1	44	н	н	SCOEt	Н	C18H18O4S2		2	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**		••	, , , , , ,					
46 H H SCOPh H $C_{23}H_{18}O_4S_2$ $128-129$ 2 $(AE-H)$ 47 H H SH H $C_{16}H_{14}O_3S_2$ $146-147$ 3 $(AE-H)$ 48 H H SH Et $C_{18}H_{18}O_3S_2$ $49-50$ 1 $(E-H)$ 49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_2S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 COOH 56 H SH H H $C_{16}H_{14}O_3S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-111$ 1 $(E-H)$ 58 H SAC H H $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 1 $(E-H)$	45	Н	Н	SCOEt	Et	$C_{21}H_{22}O_4S_2$		3	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				aac 5:		C II O S		2	0
47 H H SH H $C_{16}H_{14}O_3S_2$ $146-147$ 3 $(AE-H)$ 48 H H SH Et $C_{18}H_{18}O_3S_2$ $49-50$ 1 $(E-H)$ 49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_3S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 $COOH$ 56 H SH H H $C_{16}H_{14}O_3S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{60} 1 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{60} 1 $(E-H)$ 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ Oil^{60} 1 $(E-H)$	46	Н	Н	SCOPh	н	$C_{23}H_{18}O_4S_2$		2	U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47	н	н	SH	н	C14H14O1S1	, .	3	0
49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_3S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 COOH 56 H SH H H $C_{16}H_{14}O_3S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d0} 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d0} 1 $(E-H)$ 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ 91 0 $(E-H)$	٠,	•••	**	011	••	-1614-3-2			
49 H H SMe H $C_{17}H_{16}O_3S_2$ $110-111$ 3 $(D-H)$ 50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_3S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 COOH 56 H SH H H $C_{16}H_{14}O_3S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-111$ 1 $(E-H)$ 58 H SAC H H $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 1 $(E-H)$	48	Н	Н	SH	Et	$C_{18}H_{18}O_3S_2$		1	. 2
50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_2S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 $COOH$ 56 H SH H H $C_{16}H_{14}O_3S_2$ $109-111$ 1 $(E-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 1 $(E-H)$						G II O G	, ,	2	0
50 H H SEt H $C_{18}H_{18}O_3S_2$ $84-86$ 3 $(E-H)$ 51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_2S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 $COOH$ 56 H SH H H $C_{16}H_{14}O_3S_2$ $150-151$ $2 (D-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $109-111$ 1 $(E-H)$ 58 H SAC H H $C_{18}H_{16}O_4S_2$ $109-110$ 2 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{d_0} 1 $(E-H)$	49	Н	Н	SMe	н	$C_{17}H_{16}O_3S_2$		3	U
51 H H S-iso-Pr H $C_{19}H_{20}O_3S_2$ $124-125$ 1 $(E-H)$ 52 H H OAC H $C_{18}H_{16}O_3S$ $122-124$ 2 (AE) 53 H H OH H $C_{16}H_{14}O_4S$ $135-137$ 0 (AE) 54 H H NHAC Et $C_{20}H_{21}NO_4S$ $87-88$ 1 (E) 55 COOH 56 H SH H H $C_{16}H_{14}O_3S_2$ $150-151$ 2 $(D-H)$ 57 H SH H Et $C_{18}H_{16}O_4S_2$ $150-151$ 1 $(E-H)$ 58 H SAC H H $C_{18}H_{16}O_4S_2$ $109-111$ 1 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{60} 1 $(E-H)$ 59 H SAC H Et $C_{20}H_{20}O_4S_2$ Oil^{60} 1 $(E-H)$	50	н	н	SEt	н	CHO.S.		3	3
52 H H OAC H $C_{18}H_{16}O_{3}S_{2}$ (E-H) 53 H H OH H $C_{16}H_{14}O_{4}S_{3}$ 135—137 0 54 H H NHAC Et $C_{20}H_{21}NO_{4}S_{3}$ 87—88 1 (E) 55 SAC $C_{18}H_{16}O_{4}S_{2}$ 150—151 2 (D-H) 56 H SH H H $C_{16}H_{14}O_{3}S_{2}$ 109—111 1 (E-H) 57 H SH H Et $C_{18}H_{16}O_{4}S_{2}$ 109—111 1 57 H SAC H H $C_{18}H_{16}O_{4}S_{2}$ 109—110 2 59 H SAC H Et $C_{20}H_{20}O_{4}S_{2}$ 01 θ 0 1 59 H SAC H Et $C_{20}H_{20}O_{4}S_{2}$ 01 θ 1 0 (E-H)	50					-1616-3-2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	Н	Н	S-iso-Pr	Н	$C_{19}H_{20}O_3S_2$		1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						G 11 0 5		2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	Н	Н	OAc	н	$C_{18}H_{16}O_5S$		2	U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	н	н	ОН	н	C14H14O4S		0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	••	••	0		-1014-4-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	Н	Н	NHAc	Et	$C_{20}H_{21}NO_4S$		1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					соон				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55		\bigcirc	~ ヽ	SAc	$C_{18}H_{16}O_4S_2$	150—151	2	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\boldsymbol{\bowtie}$	o C			(D-H)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			`s	$\langle \bigcirc \rangle$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	Н	SH	Н	Н	$C_{16}H_{14}O_3S_2$	109111	1	3
58 H SAc H H $C_{18}H_{16}O_4S_2$ 109—110 2 (E-H) 59 H SAc H Et $C_{20}H_{20}O_4S_2$ Oil ^{d)} 1 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ 91 0 (E-H)								•	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									2 2
59 H SAc H Et $C_{20}H_{20}O_4S_2$ Oil ^d I 60 H SCOEt H H $C_{19}H_{18}O_4S_2$ 91 0 (E–H)	58	Н	SAc	Н	Н	$C_{18}\Pi_{16}U_4S_2$		2	2
60 H SCOEt H H C ₁₉ H ₁₈ O ₄ S ₂ 91 0 (E-H)	50	н	SAc	Н	Et	C20H20O4S2		1	0
(E-H)							91	0	0
									2
01 n 3com m = 23118 422	61	Н	SCOP	h H	Н	$C_{23}H_{18}O_4S_2$	57—158	0	3
62 H SMe H H $C_{17}H_{16}O_3S_2$ 114—116 l	43	U	CMA	и	. н	Coath OSS-		-1	2
62 H SMe H H $C_{17}H_{16}O_3S_2$ 114—116 1 (E-H)	02	п	Sivie	11	11	C171116 C3 C2			

a-d) See footnotes in Table I.

moiety of I.

Chemistry The test compounds listed in Tables I—III were synthesized by the methods shown in Chart 2. 3-Benzoylacrylic acids (IV) were mostly prepared by Friedel—Crafts acylation using maleic anhydride (method A). Acetophenones (VI) were allowed to react with glyoxylic

acid at 95 °C and dehydrated to give acrylic acids (IV) (method B). Treatment of IV with mercapto compounds provided 2-mercapto-3-propionic acids (V). 3-[4-(phenylthio)benzoyl]propionic acids (IX) were brominated at the 3-position and allowed to react with mercapto compounds in the presence of potassium carbonate to give 3-mercapto-3-[4-(phenylthio)benzoyl]propionic acids (XI) (method C). The acetylthio derivatives (V, R=Ac) were easily converted to the corresponding mercapto derivatives (R=H) by treatment with hydrazine. 2-Acetylthio-3-[4-(phenylthio)benzoyl]propionic acid and its ester (10, 11) were oxidized with m-chloroperbenzoic acid to give the sulfinyl (12,13) and sulfonyl (14) derivatives (method D). Treatment of ethyl 3-[4-(phenylthio)benzoyl]acrylate (XII) with ammonia water, and then acetyl chloride provided the 2-acetamido derivative (54) (method E). 2-Acetylphenyl phenyl sulfide (XVI) was prepared from 2mercaptobenzoic acid (XIV) in 2 steps (method F) and converted to 2-acetylthio-3-[2-(phenylthio)benzoyl]propionic acid (55) by the same reactions as in method B.

Biological Methods 1) In Normal Rats (Tables I—III, Fig. 1): Five-week-old male rats (five rats per group) were used. After prefeeding for a week, the test compounds, which were prepared as a suspension in 0.2% sodium carboxymethylcellulose (CMC-Na) solution, were orally administered to the rats at a daily dose of 100 mg/kg for 3 d. A 0.2% CMC-Na solution was orally administered to the rats in the control group. At 18 h after the final drug administration, the rats were anesthetized with diethyl ether and their blood was collected. The lipid concentration in serum was then determined with an autoanalyzer (Hitachi model 105).

2) In Cholesterol-Fed Rats (Fig. 2): Seven-week-old male rats (six rats per group) were used. The high-cholesterol diet was prepared from normal rat food (Oriental Yeast Co., Ltd.) by adding 1% cholesterol and 0.5% Na cholate. The animals were fed on the high-cholesterol diet ad lib. for 10 d. For the following 6 d, the test compounds, which were prepared as a suspension in 0.2% CMC-NA solution, were orally administered to the rats at a daily dose of 50 or 100 mg/kg. A 0.2% CMC-Na solution was orally administered to the cholesterol-fed rats in the control group. At the end of the experimental period, they were treated as in 1).

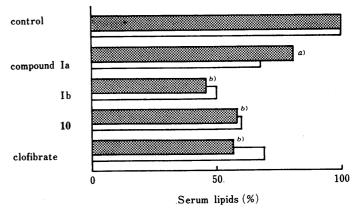


Fig. 1. Effect of Compounds Ia, Ib and 10 on Serum Lipids in Normal Rats

, cholesterol; , triglyceride; a) p < 0.01, b) p < 0.001.

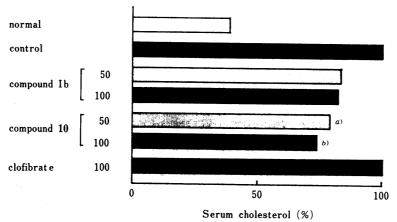


Fig. 2. Effect of Compounds Ib and 10 on Serum Total Cholesterol in Cholesterol-Fed Rats a) p < 0.05, b) p < 0.01.

Results and Discussion

The physical constants and biological data of the derivatives prepared in this work are listed in Tables I—III.

As shown in Table I, with regard to the effects of the structure between the two benzene rings, the methylene (2)-, ethylene (3)- and sulfide (10, 11)-linked derivatives showed potent hypocholesterolemic activities, and the diphenyl derivative (1) revealed comparable activity. But the other linkages, such as methyleneoxy (4, 5), sulfinyl (12, 13), sulfonyl (14), amido (15, 16), etc., resulted in diminished activities, and the 2-pyridyloxy (6) and the cyclohexyl (8) derivatives also displayed only slight activities. Among the condensed-ring derivatives, as shown in Table II, the dibenzothiophene (30-32) and the dibenzofuran (33, 34) derivatives showed activity. In the series of Tables I and II, compound 10, containing the diphenyl sulfide group, was found to be the most active analogue. We then further investigated derivatives of the diphenyl sulfide, as shown in Table III, and the following structure-activity relationships were found. (i) Methyl or chloro substitution at the para position on the diphenyl sulfide had little influence on the activity (39, 40). (ii) The activities of the ester derivatives are weaker than those of the corresponding free carboxylic acid. (iii) Like the 2-acylthio derivatives (44-46), the 2methylthio (49) and 2-ethylthio (50) derivatives are active. (iv) The 3-acylthio derivatives (56—62) are less active than the 2-acylthio derivatives. (v) Replacement of the 3-acylthio moiety of 10 with an acetoxy or acetamido group lowered the activity. (vi) The activity of the ortho-phenylthio derivative (55) is weaker than that of the para-phenylthio compound (10). Most of these tendencies were similarly found in the diphenyl ether derivatives (I), but (i) and (iii) were not applicable.1) (In the derivatives of I, chloro substitution at the para position on the diphenyl ether greatly increased the activity and the 2-alkylthio derivatives were inactive.)

Next, we compared the hypocholesterolemic activities of 10, Ia, Ib and clofibrate⁶⁾ (CPIB, ethyl 2-(4-chlorophenoxy)-2-methylpropionate) using normal rats (Fig. 1) and cholesterol-fed rats (Fig. 2). As shown in Fig. 1, the potencies of their activities in the normal rats were in the order Ib>10=CPIB>Ia.

In cholesterol-fed rats (Fig. 2), however, the activity of 10 was stronger than that of Ib, and CPIB showed no activity.

In the normal rats, CPIB increased the weight of the liver by 25% over the control value, while 10 increased it 5.7%. From these biological results, it is concluded that compound 10 shows strong activity, especially in cholesterol-fed rats, and has no liver toxicity, so it is likely that the mechanism of hypocholesterolemic activity of 10 is different from that of CPIB. Detailed pharmacological data will be reported elsewhere.⁷⁾

Experimental

All the melting points are uncorrected. Infrared (IR) spectra were measured with a JASCO DS-301 spectrophotometer. Nuclear magnetic resonance (NMR) spectra were taken at 200 MHz with tetramethylsilane (TMS) as an internal standard on Varian XL-200 spectrometer. The chemical shifts are expressed as ppm down field from TMS. The following abbreviations are used: s=singlet; d=doublet; t=triplet; q=quartet; m=multiplet and br=broad. For column chromatography, silica gel (Wako gel, C-200) was used. Typical examples are given to illustrate the general procedure. IR and ¹H-NMR spectral data for the compounds 1—62 are listed in Tables IV—VI.

Method A (1) 3-[4-(Phenylthio)benzoyl]acrylic Acid: AlCl₃ (6.7 g) was added to a stirred solution of diphenyl sulfide (5.23 g) and maleic anhydride (2.45 g) in CH₂Cl₂ (150 ml) over 30 min at room temperature. Stirring was continued for an additional 4 h and the solvents were removed under reduced pressure. The residue was poured into concentrated HClice, and the whole was extracted with AcOEt. The extract was washed with H₂O, dried (MgSO₄) and concentrated. The residue was recrystallized from AcOEt-hexane to give yellow needles (5.11 g, 71.9 %), mp 157—159 °C. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1690, 1660. NMR (acetone- d_6) δ : 6.77 (1H, d, J=16Hz), 7.30—7.62 (7H, m), 7.93 (1H, d, J=16Hz), 8.02 (2H, d, J=9Hz), 13.00 (1H, br s).

following compounds were similarly prepared. 3-(4-Phenylbenzoyl)acrylic Acid8): mp 172-175°C (form AcOEt-hexane), 42%. 3-(4-Benzylbenzoyl)acrylic Acid: Oil, 94%. 3-[4-(2-Phenylethyl)]benzoylacrylic Acid: mp 72-74°C (from Et₂O-hexane), 83%. 3-(4-Cyclohexylbenzoyl)acrylic Acid9: mp 138-140 °C (from Et₂O-hexane), 62%. 3-(4-Cyclohexylmethylbenzoyl)acrylic Acid: mp 151.5—153°C (from acetone-hexane), 23%. 3-[4-(4-Chlorobenzoylamino)benzoyl]acrylic Acid: >220 °C (from AcOEt), 74%. 3-[4-(2-Benzoylaminoethyl)benzoyl]acrylic Acid: mp 163-165°C (from AcOEt), 86%. 3-[4-(2-(4-Chlorobenzoyl)aminoethyl)benzoyl]acrylic Acid: mp 174-175°C (from AcOEt), 95%. 3-(4-Phenylsulfonylaminobenzoyl)acrylic Acid: mp 177-178 °C (from AcOEt), 38%. 3-[4-(4-Chlorobenzoyl)aminomethylbenzyl]acrylic Acid: mp 178—181 °C (from AcOEt), 81%. 3-(1-Naphthoyl)acrylic Acid¹⁰): mp 144—145 °C (from AcOEt), 25%. 3-(2-Naphthoyl)acrylic Acid¹⁰⁾: mp 164—165 °C (from AcOEt), 21%. 4-(3,4-Dihydro-2(H)-quinolon-6-yl)-4-oxo-2-butenoic Acid: mp ca. 210 °C (dec.) (from AcOEt). 4-(5-Oxaindolyl)-4-oxo-2-butenoic Acid: mp>220 °C (from AcOEt), 91%. 4-(3-Dibenzothienyl)-4-oxo-2-butenoic Acid: mp 192—195 °C (dec.) (from acetone-hexane), 16%. 4-(2-Dibenzothienyl)-4-oxo-2-butenoic Acid: mp 205 °C (dec.) (from acetone-hexane), 5%. 4-[3-(9-Acetylcarba-

TABLE IV. IR and ¹H-NMR Spectral Data for the Compounds in Table I

		Yield			NMR
No.	Method	(%)	IR $v_{\text{max}} \text{ cm}^{-1}$	Solv."	Chemical shift δ ppm
1	A	81.8	(KBr) 1720, 1680	С	2.21 (3H, s), 3.66 (1H, dd, $J=16$, 4Hz), 3.75 (1H, dd, $J=16$, 6Hz), 6.80 (1H, br s), 7.40—7.75 (7H, m), 8.04 (2H, d, $J=8$ Hz)
2	Α	64.1	(KBr) 1700—1670	C	2.37 (3H, s), $3.55 (1H, dd, J=18, 6 Hz)$, $3.68 (1H, dd, J=18, 8 Hz)$, $4.04 (2H, s)$, $4.75 (1H, dd, J=8, 6 Hz)$, $7.16-7.31 (7H, m)$, $7.88 (2H, d, J=8 Hz)$
3	A	94.3	(KBr) 1700, 1680	C	2.38 (3H, s), 2.92—3.03 (4H, m), 3.55 (1H, dd, $J=18$, 5Hz), 3.69 (1H, dd, $J=18$, 7 Hz), 4.76 (1H, dd, $J=7$, 5Hz), 7.13—7.34 (7H, m), 7.87 (2H, d, $J=9$ Hz), 8.66 (1H, brs)
4	В	79.7	(KBr) 1700, 1670		2.38 (3H, s), 3.52 (1H, dd, $J=17$, 5 Hz), 3.70 (1H, dd, $J=17$, 8 Hz), 4.74 (1H, dd, $J=8$, 5 Hz), 5.25 (2H, s), 7.14 (2H, d, $J=8$ Hz), 7.45 (5H, m), 8.02 (2H, d, $J=8$ Hz)
5	В	70.7	(KBr) 1720, 1700, 1660		2.36 (3H, s), 3.51 (1H, dd, $J=17$, 5 Hz), 3.62 (1H, dd, $J=17$, 8 Hz), 4.72 (1H, dd, $J=8$, 5 Hz), 5.08 (2H, s), 6.98 (2H, d, $J=8$ Hz), 7.36 (4H, m), 7.92 (2H, d, $J=8$ Hz)
6	В	78.2	(KBr) 1710—1640	С	2.37 (3H, s), 3.56 (1H, dd, $J=18$, 7Hz), 3.66 (1H, dd, $J=18$, 7Hz), 4.53 (1H, t, $J=7$ Hz), 6.99 (1H, d, $J=8$ Hz), 7.09 (1H, dd, $J=8$, 5Hz), 7.77 (1H, td, $J=8$, 2Hz), 8.26 (1H, dd, $J=5$, 2Hz)
7	В	78.6	(KBr) 1720, 1682, 1662		2.36 (3H, s), 3.48 (1H, dd, $J=17$, 5 Hz), 3.62 (1H, dd, $J=17$, 8 Hz), 4.53 (1H, dd, $J=8$, 5 Hz), 5.29 (2H, s), 7.15 (2H, d, $J=8$ Hz), 7.37 (1H, dd, $J=8$, 5 Hz), 7.54 (1H, d, $J=8$ Hz), 7.85 (1H, td, $J=8$, 2 Hz), 7.96 (2H, d, $J=8$ Hz), 8.60 (1H, m)
8	A	93.5	(KBr) 1715, 1680		1.42 (5H, m), 1.86 (5H, m), 2.38 (3H, s), 2.57 (1H, m), 3.58 (1H, dd, $J = 18$, 5 Hz), 3.66 (1H, dd, $J = 18$, 8 Hz), 4.76 (1H, dd, $J = 8$, 5 Hz), 7.31 (2H, d, $J = 8$ Hz), 7.89 (2H, d, $J = 8$ Hz)
9	A	68.7	(KBr) 1700, 1675		0.95—1.42 (5H, m), 1.64—1.95 (6H, m), 2.38 (3H, s), 3.52 (1H, dd, $J=17$, 5 Hz), 3.65 (1H, dd, $J=17$, 7 Hz), 3.81 (2H, d, $J=6$ Hz), 4.75 (1H, dd, $J=7$, 5 Hz), 6.92 (2H, d, $J=8$ Hz), 7.51 (2H, d, $J=8$ Hz), 8.80 (1H, brs)
10	Α	94.8	(KBr) 1700, 1675		2.38 (3H, s), 3.50 (1H, dd, $J=18$, 6 Hz), 3.64 (1H, dd, $J=18$, 7 Hz), 4.74 (1H, dd, $J=7$, 6 Hz), 7.19—7.55 (7H, m), 7.81 (2H, d, $J=9$ Hz), 8.80 (1H, br s)
11	Ά	88.9	(KBr) 1735, 1700, 1670		1.24 (3H, t, $J=7$ Hz), 2.36 (3H, s), 3.48 (1H, dd, $J=18$, 4Hz), 3.64 (1H, dd, $J=18$, 8Hz), 4.20 (2H, q, $J=7$ Hz), 4.69 (1H, dd, $J=8$, 4Hz), 7.21 (2H, d, $J=9$ Hz), 7.40—7.54 (5H, m), 7.82 (2H, d, $J=9$ Hz)
12	D	94.8	(KBr) 1700—1690		2.35 (3H, s), 3.52 (1H, dd, $J = 14$, 8 Hz), 3.67 (1H, dd, $J = 14$, 7 Hz), 4.74 (1H, dd, 7.47—7.70 (5H, m), 7.75 (2H, d, $J = 9$ Hz), 8.02 (2H, d, $J = 9$ Hz)
13	D	57.1	(KBr) 1725, 1690— 1670		1.24 (3H, t, $J=7$ Hz), 2.36 (3H, s), 3.50 (1H, dd, $J=16$, 5 Hz), 3.69 (1H, dd, $J=16$, 7 Hz), 4.19 (2H, q, $J=7$ Hz), 4.69 (1H, dd, $J=7$, 5 Hz), 7.46—7.70 (5H, m), 7.76 (2H, d, $J=9$ Hz), 8.04 (2H, d, $J=9$ Hz)
14	D	45.8	(KBr) 1700—1680		2.17 (3H, s), 3.58 (1H, dd, $J=19$, 4Hz), 3.82 (1H, dd, $J=19$, 8Hz), 4.73 (1H, dd, $J=8$, 4Hz), 7.60—7.73 (3H, m), 8.04 (1H, d, $J=8$ Hz), 8.05 (1H, d, $J=8$ Hz), 8.19 (4H, m)
15	Α	59.1	(KBr) 3320, 1720— 1640	D	2.38 (3H, s), 3.52 (1H, dd, $J=18$, 4Hz), 3.66 (1H, dd, $J=18$, 8Hz), 4.55 (1H, dd, $J=8$, 4Hz), 7.65 (2H, d, $J=8$ Hz), 8.02 (6H, m), 10.57 (1H, s), 12.84 (1H, brs)
16	Α	92.5	(KBr) 3350, 1740, 1695 1680, 1660	D ,	1.15 (3H, t, $J=7$ Hz), 2.38 (3H, s), 3.56 (1H, dd, $J=18$, 4Hz), 3.70 (1H, dd, $J=18$, 8Hz), 4.10 (2H, q, $J=7$ Hz), 4.58 (1H, dd, $J=8$, 2Hz), 7.64 (2H, d, $J=8$ Hz), 8.00 (6H, m), 10.57 (1H, s)
17	Α	87.8	(KBr) 3340, 2900, 1700 1675		2.38 (1H, s), 2.94 (2H, t, $J=7$ Hz), 3.50 (3H, m), 3.65 (1H, dd, $J=18$, 8 Hz), 4.52 (1H, $J=8$, 5 Hz), 7.40 (2H, d, $J=8$ Hz), 7.48 (3H, m), 7.80 (2H, dd, $J=8$, 2 Hz), 7.92 (2H, d, $J=8$ Hz), 8.53 (1H, t, $J=5$ Hz), 12.85 (1H, brs)
18	A	93.4	(KBr) 3280, 2970, 1730 1710, 1680		1.14 (3H, t, $J=7$ Hz), 2.40 (3H, s), 2.96 (2H, t, 7 Hz), 3.55 (3H, m), 3.70 (1H, dd, $J=18$, 8 Hz), 4.10 (2H, q, $J=7$ Hz), 4.60 (1H, dd, $J=8$, 5 Hz), 7.44 (2H, d, $J=8$ Hz), 7.50 (3H, m), 7.82 (2H, dd, $J=8$, 2 Hz), 7.94 (2H, d, $J=8$ Hz), 8.60 (1H, t, $J=5$ Hz)
19	A	92.7	(KBr) 3320, 2900, 1700 1680, 1665	D,	2.38 (3H, s), 2.95 (2H, t, $J=7$ Hz), 3.52 (3H, m), 3.67 (1H, dd, $J=18$, 8 Hz), 4.55 (1H, dd, $J=8$, 4 Hz), 7.42 (2H, d, $J=8$ Hz), 7.55 (2H, d, $J=8$ Hz), 7.85 (2H, d, $J=8$ Hz), 7.94 (2H, d, $J=8$ Hz), 8.66 (1H, t, $J=5$ Hz), 12.88 (1H, s)
20	Α	97.6	(KBr) 3320, 2920, 1735	D ,	(114, 315, 123, 123, 123, 123, 123, 123, 123, 123
21	Α	73.4	1690, 1675 (KBr) 3420, 3210, 2900 1700, 1670	D,	2.36 (3H, s), 3.42 (1H, dd, $J=18$, 5 Hz), 3.58 (1H, dd, $J=18$, 8 Hz), 4.50 (1H, dd, $J=8$, 5 Hz), 7.24 (2H, d, $J=8$ Hz), 7.62 (3H, m), 7.88 (4H, m), 10.8 (1H, s), 12.8 (1H, brs)
22	A	95.6	(neat) 3340, 3000, 1730 1660	D ,	2.38 (3H, s), 3.51 (1H, dd, J =18, 5 Hz), 3.67 (1H, dd, J =18, 8 Hz), 4.56 (3H, m), 7.48 (2H, d, J =8 Hz), 7.58 (2H, d, J =8 Hz), 7.98 (2H, d, J =8 Hz), 7.98 (2H, d, J =8 Hz), 9.24 (1H, t, J =5 Hz), 12.8 (1H, brs)

a) $C = CDCl_3$: $A = acetone-d_6$; $D = DMSO-d_6$.

zolyl)]-4-oxo-2-butenoic Acid: mp 223 °C (dec.) (from AcOEt), 74%. 4-[3-(9-Methylcarbazolyl)]-4-oxo-2-butenoic Acid: mp 210 °C (dec.) (from AcOEt), 19%. 3-[4-(4-Methylphenylthio)benzoyl]acrylic Acid: mp 146—147°C (from AcOEt), 84%. 3-[4-(4-Chlorophenylthio)benzoyl]acrylic Acid: mp 164—165 °C (from AcOEt), 87%.

(2) 2-Acetylthio-3-[4-(phenylthio)benzoyl]propionic Acid (10): 3-[4-Phenylthio)benzoyl]acrylic acid (5.12 g) and thioacetic acid (1.44 ml) were dissolved in CH_2Cl_2 (100 ml), then the mixture was stirred for 5 h at room temperature. The mixture was concentrated and the residue was re-

crystallized from AcOEt-hexane to give **10** (6.16 g, 94.8%), mp 116.5—118.5 °C. (*Anal.* Calcd for $C_{18}H_{16}O_4S_2$: C, 59.98; H, 4.47. Found: C, 59.84; H, 4.70).

Method B 3-(4-Benzyloxybenzoyl)-2-hydroxypropionic Acid: A mixture of 4-benzyloxyacetophenone (10.00 g) and glyoxylic acid monohydrate (5.15 g) was stirred at 95 °C under reduced pressure (9 mmHg) for 2 h. After cooling, the mixture was dissolved in aqueous 5% K_2CO_3 , and washed with AcOEt. The aqueous layer was acidified with aqueous 10% HCl, and the whole was extracted with AcOEt. The extract was washed

TABLE V. IR and ¹H-NMR Spectral Data for the Compounds in Table II

NI-	No. Method Yield IR vcm ⁻¹			NMR	
No.	Method	(%)	IR v_{max} cm ⁻¹	Solv.	Chemical shift δ ppm
23	В	85.4	17201670	C	2.38 (3H, s), 3.70 (1H, dd, $J=18$, 6Hz), 3.82 (1H, dd, $J=18$, 8Hz), 3.94 (3H, s), 4.82 (1H, dd, $J=8$, 6Hz), 7.21 (2H, m), 7.78 (1H, d, $J=8$ Hz), 7.84 (1H, $J=8$ Hz), 7.99 (1H, d, $J=8$ Hz), 8.40 (1H, s)
24	A	90.3	1720—1660	A	2.38 (3H, s), 3.64 (1H, dd, $J=18$, 4Hz), 3.84 (1H, dd, $J=18$, 8Hz), 4.84 (1H, dd, $J=8$, 4Hz), 7.60 (3H, m), 7.98 (1H, m), 8.13 (d, $J=8$ Hz), 8.64 (1H, m)
25	A	89.1	1720—1660	A	2.40 (3H, s), 3.72 (1H, dd, $J=18$, 4Hz), 3.94 (1H, dd, $J=18$, 8Hz), 4.82 (1H, dd, $J=8$, 4Hz), 7.67 (2H, m), 8.09 (4H, m), 8.74 (1H, s)
26	A	61.4	3400, 1720—1650	D	2.38 (3H, s), 2.52 (2H, t, $J = 8$ Hz), 2.96 (2H, t, $J = 8$ Hz), 3.46 (1H, dd, $J = 18$, 4 Hz), 3.63 (1H, dd, $J = 18$, 8 Hz), 4.53 (1H, dd, $J = 8$ Hz), 6.95 (1H, d, $J = 8$ Hz), 7.83 (2H, m), 10.41 (1H, s), 12.86 (1H, brs)
27	A	88.1	1725, 1685—1665	D	1.13 (3H, t, $J=7$ Hz), 2.38 (3H, s), 2.52 (2H, t, $J=8$ Hz), 2.96 (2H, t, $J=8$ Hz), 3.50 (1H, dd, $J=18$, 4 Hz), 3.64 (1H, dd, $J=18$, 8 Hz), 4.08 (2H, q, $J=7$ Hz), 4.56 (1H, dd, $J=8$, 4 Hz), 6.94 (1H, m), 7.80 (2H, m), 10.40 (1H, s)
28	A	61.8	3300, 1730—1660	D	2.37 (3H, s), 3.46 (1H, dd, $J = 18$, 4Hz), 3.54 (2H, s), 3.60 (1H, dd, $J = 18$, 8Hz), 4.52 (1H, d, $J = 8$ Hz), 7.83 (1H, s), 7.88 (1H, d, $J = 8$ Hz), 10.75 (1H, s), 12.85 (1H, brs)
29	A	30.3	1740—1670	A	1.20 (3H, t, $J=7$ Hz), 2.38 (3H, s), 3.52 (1H, dd, $J=18$, 4 Hz), 3.56 (2H, s), 3.70 (1H, dd, $J=18$, 8 Hz), 4.14 (2H, q, $J=7$ Hz), 4.68 (1H, dd, $J=8$, 4Hz), 7.02 (1H, d, $J=8$ Hz), 7.94 (2H, m), 9.80 (1H, br s)
30	A	90.1	1700, 1690, 1670	C	
31	Α	65.8	1720, 1705, 1675	С	1.29 (3H, t, $J=7$ Hz), 2.40 (3H, s), 3.71 (1H, dd, $J=16$, 4 Hz), 3.86 (1H, dd, $J=16$, 8 Hz), 4.25 (2H, q, $J=7$ Hz), 4.79 (1H, dd, $J=8$, 4 Hz), 7.53 (2H, m), 7.88 (1H, m), 7.93 (1H, d, $J=8$ Hz), 8.05 (1H, d, $J=8$ Hz), 8.25 (1H, m), 8.76 (1H, s)
32	A	77.1	1715, 1690, 1675	C	2.42 (3H, s), 3.70 (1H, dd, $J = 16$, 4Hz), 3.48 (1H, dd, $J = 16$, 8Hz), 4.40 (1H, br s), 4.83 (1H, dd, $J = 8$, 4Hz), 7.54 (2H, m), 7.91 (1H, m), 8.05 (1H, d, $J = 8$ Hz), 8.22 (1H, m), 8.23 (1H, d, $J = 8$ Hz), 8.48 (1H, s)
33	В	90.8	1710—1650	A	2.40 (3H, s), 3.77 (1H, dd, $J = 18$, 4Hz), 3.92 (1H, dd, $J = 18$, 8Hz), 4.82 (1H, dd, $J = 8$, 4Hz), 7.49 (1H, td, $J = 8$, 5Hz), 7.75 (2H, m), 8.26 (1H, d, $J = 2$ Hz), 8.89 (1H, d, $J = 2$ Hz)
34	В	85.0	1740—1670	C	1.28 (3H, t, $J=7$ Hz), 2.40 (3H, s), 3.70 (1H, dd, $J=18$, 4Hz), 3.83 (1H, dd, $J=18$, 8Hz), 4.24 (2H, q, $J=7$ Hz), 4.78 (1H, dd, $J=8$, 4Hz), 7.40 (1H, td, $J=8$, 2Hz), 7.52 (1H, td, $J=8$, 2Hz), 7.60 (2H, d, $J=8$ Hz), 8.00 (1H, d, $J=8$ Hz), 8.12 (1H, d, $J=8$, 2Hz), 8.58 (1H, d, $J=2$ Hz)
35	A	88.3	1710—1650	D	2.41 (3H, s), 2.94 (3H, s), 3.69 (1H, dd, $J=18$, 5 Hz), 3.84 (1H, dd, $J=18$, 8 Hz), 4.64 (1H, dd, $J=8$, 5 Hz), 7.50 (1H, t, $J=8$ Hz), 7.64 (1H, td, $J=8$, 2 Hz), 8.08 (1H, dd, $J=8$, 2 Hz), 8.30 (3H, m), 8.86 (1H, s), 13.0 (1H, brs)
36	Α	82.4	1720—1670	D	1.18 (3H, t, $J=8$ Hz), 2.43 (3H, s), 2.95 (3H, s), 3.73 (1H, dd, $J=18$, 5 Hz), 3.86 (1H, dd, $J=18$, 8 Hz), 4.14 (2H, q, $J=8$ Hz), 4.67 (1H, dd, $J=8$, 5 Hz), 7.50 (1H, t, $J=8$ Hz), 7.64 (1H, t, $J=8$ Hz), 8.08 (1H, d, $J=8$ Hz), 8.30 (3H, m), 8.86 (1H, s)
37	A	92.9	1700, 1650	D	J=0.40 (3H, s), 3.67 (1H, dd, $J=18$, 5 Hz), 3.84 (1H, dd, $J=18$, 8 Hz), 3.94 (3H, s), 4.64 (1H, dd, $J=8$, 5 Hz), 7.32 (1H, t, $J=8$ Hz), 7.70 (2H, m), 8.12 (1H, dd, $J=8$, 2 Hz), 8.35 (1H, d, $J=8$ Hz), 8.96 (1H, d, $J=2$ Hz), 12.8 (1H, brs)
38	A	81.3	1735, 1685, 1660	D	1.17 (3H, t, $J=8$ Hz), 2.43 (3H, s), 3.72 (1H, dd, $J=18$, 5 Hz), 3.88 (1H, dd, $J=18$, 8 Hz), 3.94 (3H, s), 4.13 (2H, q, $J=8$ Hz), 4.68 (1H, dd, $J=8$, 5 Hz), 7.32 (1H, t, $J=8$ Hz), 7.56 (1H, t, $J=8$ Hz), 7.70 (2H, m), 8.12 (1H, d, $J=8$ Hz), 8.34 (1H, d, $J=8$ Hz), 8.95 (1H, s)

a) See footnote in Table IV.

with $\rm H_2O$, dried (MgSO₄) and concentrated. The residue was recrystallized from AcOEt-hexane to give colorless needles (8.94 g, 66.4%), mp 164—165 °C.

2-Acetoxy-3-[4-(phenylthio)benzoyl]propionic Acid (52): Acetic anhydride (5.0 ml) was added to a stirred solution of 2-hydroxy-3-[4-(phenylthio)benzoyl]propionic acid (5.00 g) pyridine (30 ml) at 0 °C, and the stirring was continued for 1 h at 0 °C. The mixture was poured into concentrated HCl-ice, and the whole was extracted with AcOEt. The extract was washed with H_2O , dried (MgSO₄) and concentrated. The residue was recrystallized from AcOEt-hexane to give 52 (5.58 g, 98.2%), mp 122—123 °C. Anal. Calcd for $C_{18}H_{16}O_5S$: C, 62.79; H, 4.68. Found: C, 62.79: H, 4.61.

3-(4-Benzyloxybenzoyl)acrylic Acid: A mixed solution of 3-(4-benzyloxybenzoyl)-2-hydroxypropionic acid (8.94 g) and KHSO₄ (4.6 g) in toluene (100 ml) was heated for 2 h under reflux, then the whole was washed with H₂O, dried (MgSO₄) and concentrated. The residue was recrystallized from benzene to give yellow needles (5.25 g, 60.1%), mp 180—182 °C. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1695, 1668. NMR (acetone- d_6) δ : 5.30 (2H, s), 6.78 (1H, d, J= 16 Hz), 7.22 (2H, d, J= 8 Hz), 7.46 (5H, m), 7.98 (1H, d, J= 16 Hz), 8.12 (2H, d, J= 8 Hz).

The following compounds were similarly prepared. 3-[4-(4-Chlorobenzyloxy)benzoyl]acrylic Acid: mp 173—174 °C (from benzene), 71%. 3-[4-(2-Pyridyloxy)benzoyl]acrylic Acid: mp 128—130 °C (from benzene), 6.5%. 3-[4-(2-Pyridylmethoxy)benzoyl]acrylic Acid: mp 197—198 °C, 31%. 3-(6-Methoxy-2-naphtoyl)acrylic Acid: mp 120—127 °C (dec.) (from AcOEt), 19%. 4-(3-Dibenzofuranyl)-4-oxo-2-butanoic Acid:

mp 215 °C (dec.) (from AcOEt), 55%.

Method C 3-Acetylthio-3-(4-phenylthiobenzoyl)propionic Acid (58): A solution of Br₂ (11 ml) in CHCl₃ (30 ml) was added dropwise to a stirred solution of 3-(4-phenylthiobenzoyl)propionic acid (prepared from succinic anhydride in a manner similar to that described under method A-(1), mp 141—142 °C (from AcOEt-hexane)) (6.32 g) in CHCl₃ (70 ml). The mixture was stirred for an additional 3 h at room temperature, and CHCl₃ was removed under reduced pressure. The residue was dissolved in dimethylformamide (DMF) (50 ml), and added to a mixed solution of thioacetic acid (1.6 ml) and K_2CO_3 (2.00 g) with stirring. The stirring was continued for 10 h at room temperature, and the mixture was suspended in H₂O. The whole was extracted with AcOEt, and the extract was washed with H₂O, dried (MgSO₄) and concentrated. The residue was purified by column chromatography on silica gel with acetone–hexane (1:10, v/v) as an eluent and recrystallized from Et₂O-hexane to give 58 (6.25 g), 82.9%. Anal. Calcd for C₁₈H₁₆O₄S₂: C, 59.98; H, 4.47. Found: C, 59.80; H, 4.54.

Method D 2-Acetylthio-3-(4-phenylsulfinylbenzoyl)propionic Acid (12): A solution of m-chloroperbenzoic acid (1.72 g) in CH₂Cl₂ (20 ml) was added dropwise to a stirred and ice-cooled solution of 10 (3.60 g) in CH₂Cl₂ (20 ml). The mixture was stirred for 2 h at room temperature and CH₂Cl₂ was removed under reduced pressure. The residue was suspended in H₂O and the whole was extracted with AcOEt. The extract was washed with H₂O, dried (MgSO₄) and concentrated. The residue was purified by column chromatography on silica gel with Et₂O-hexane (1:5, v/v) as an eluent to give 12 as an oil (3.57 g, 94.8%). Anal. Calcd for C₁₈H₁₆O₄S₂: C, 57.43; H, 4.28. Found: C, 57.80; H, 4.59.

TABLE VI. IR and ¹H-NMR Spectral Data for the Compounds in Table III

		Viold			NMR
No.	Method	Yield (%)	IR v_{max} cm ⁻¹	Solv.	Chemical shift δ ppm
39	A	52.3	1700, 1680, 1665		2.37 (3H, s), 2.40 (3H, s), 3.49 (1H, dd, $J=18$, 6 Hz), 3.63 (1H, dd, $J=18$, 8 Hz), 4.74 (1H, dd, $J=8$, 6 Hz), 7.15 (2H, d, $J=9$ Hz), 7.24 (2H, d, $J=9$ Hz), 7.42 (2H, d, $J=9$ Hz), 7.78 (2H, d, $J=9$ Hz)
40	Α	92.3	1720—1660		2.38 (3H, s), 3.52 (1H, dd, $J=18$, 4 Hz), 3.62 (1H, dd, $J=18$, 8 Hz), 4.47 (1H, dd, $J=8$, 4 Hz), 7.21 (2H, d, $J=9$ Hz), 7.40 (4H, m), 7.80 (2H, d, $J=9$ Hz)
41	A	83.2	1725, 1700, 1670		1.22 (3H, d, $J=7$ Hz), 1.24 (3H, d, $J=7$ Hz), 2.36 (3H, s), 3.48 (1H, dd, $J=18$, 5 Hz), 3.65 (1H, dd, $J=18$, 8 Hz), 4.65 (1H, dd, $J=8$, 5 Hz), 5.04 (1H, m), 7.22 (2H, d, $J=9$ Hz), 7.39—7.56 (5H, m), 7.84 (2H, d, $J=9$ Hz)
42	A	86.7	1735, 1700, 1670	С	0.89 (3H, t, $J=7$ Hz), 1.24—1.44 (2H, m), 1.53—1.66 (2H, m), 2.34 (3H, s), 3.47 (1H, dd, $J=18$, 5 Hz), 3.64 (1H, dd, $J=18$, 7 Hz), 4.13 (2H, t, $J=7$ Hz), 4.69 (1H, dd, $J=7$, 5 Hz), 7.20 (2H, d, $J=9$ Hz), 7.36—7.53 (5H, m), 7.81 (2H, d, $J=9$ Hz)
43	Α	94.1	1730, 1690, 1660		2.32 (3H, s), 3.50 (1H, dd, $J=16$, 5 Hz), 3.64 (1H, dd, $J=16$, 7 Hz), 4.75 (1H, dd, $J=7$, 5 Hz), 5.17 (2H, s), 7.19 (2H, d, $J=9$ Hz), 7.26—7.52 (10H, m), 7.79 (2H, $J=9$ Hz)
44	Α	51.6	1705, 1670		1.19 (3H, t, $J=7$ Hz), 2.63 (2H, q, $J=7$ Hz), 3.49 (1H, dd, $J=17$, 4 Hz), 3.65 (1H, dd, $J=17$, 7 Hz), 4.75 (1H, dd, $J=7$ 4Hz), 7.22 (2H, d, $J=9$ Hz), 7.38—7.58 (5H, m), 7.82 (2H, d, $J=9$ Hz)
45	Α	57.4	1725, 1680		1.18 (3H, t, $J=7$ Hz), 1.23 (3H, t, $J=7$ Hz), 2.61 (2H, q, $J=7$ Hz), 3.48 (1H, dd, $J=17$, 4Hz), 3.65 (1H, dd, $J=17$, 7 Hz), 4.19 (2H, q, $J=7$ Hz), 4.69 (1H, dd, $J=7$, 4 Hz), 7.21 (2H, d, $J=9$ Hz), 7.36—7.56 (4H, m), 7.83 (2H, d, $J=9$ Hz)
46	Α	92.7	1700, 1665, 1645		3.59 (1H, dd, $J=18$, 5 Hz), 3.75 (1H, dd, $J=18$, 7 Hz), 4.97 (1H, dd, $J=7$, 5 Hz), 7.21 (2H, d, $J=9$ Hz), 7.39—7.63 (8H, m), 7.83 (2H, d, $J=9$ Hz), 7.96 (2H, d, $J=9$ Hz), 10.62 (1H, brs)
47	Α	75.0	2550, 1700, 1665		2.68 (1H, d, $J=9$ Hz), 3.45 (1H, dd, $J=18$, 4Hz), 3.71 (1H, dd, $J=18$, 9Hz), 3.93 (1H, m), 7.29 (2H, d, $J=8$ Hz), 7.53 (5H, m), 7.96
48	A	74.8	2540, 1735, 1660		1.28 (3H, t, $J=7$ Hz), 2.23 (1H, d, $J=9$ Hz), 3.33 (1H, dd, $J=18$, 5 Hz), 3.64 (1H, dd, $J=18$, 9 Hz), 3.86—3.98 (1H, m), 4.21 (2H, q, $J=7$ Hz), 7.20 (2H, d, $J=9$ Hz), 7.38—7.52 (5H, m), 7.81 (2H, d, $J=9$ Hz)
49	Α	53.4	1700, 1665		2.29 (3 \acute{H} , s), 3.24 (1H, dd, $J=18$, 4Hz), 3.62 (1H, dd, $J=18$, 10 Hz), 3.79 (1H, dd, $J=10$, 4Hz), 7.21 (2H, d, $J=9$ Hz), 7.39—7.54 (5H, m), 7.83 (2H, d, $J=9$ Hz)
50	A	85.9	1700, 1660		2.28 (3H, t, $J=7$ Hz), 2.66—2.92 (2H, m), 3.24 (1H, dd, $J=18$, 4Hz), 3.61 (1H, dd, $J=18$, 10 Hz), 3.87 (1H, dd, $J=10$, 4Hz), 7.21 (2H, d, $J=9$ Hz), 7.39—7.54 (5H, m), 7.83 (2H, d, $J=9$ Hz)
51	Α	97.8	1690, 1673		1.28 (3H, d, $J=7$ Hz), 1.35 (3H, d, $J=7$ Hz), 3.23 (1H, dd, $J=18$, 5 Hz), 3.28 (1H, m), 3.60 (1H, dd, $J=18$, 9 Hz), 3.91 (1H, dd, $J=9$, 5 Hz), 7.20 (2H, d, $J=8$ Hz), 7.42 (3H, m), 7.50 (2H, m), 7.83 (2H, d, $J=8$ Hz)
52	В	98.2	1750—1700. 1670		2.04 (3H, s), 3.52 (1H, dd, $J=18$, 4Hz), 3.65 (1H, dd, $J=18$, 8Hz), 5.47 (1H, dd, $J=8$, 4Hz), 7.28 (2H, d, $J=8$ Hz), 7.53 (5H, m), 7.96 (2H, d, $J=8$ Hz)
53	В	38.4	3380, 1725, 1685		3.29 (2H, d, $J=6$ Hz), 4.49 (1H, t, $J=6$ Hz), 5.45 (1H, brs), 7.28 (2H, d, $J=8$ Hz), 7.53 (5H, m), 7.92 (2H, d, $J=8$ Hz), 12.5 (1H, brs)
54	E	59.3	3360, 1725, 1675		1.17 (3H, t, $J=8$ Hz), 1.91 (3H, s), 2.86 (1H, s), 3.51 (1H, dd, $J=18$, 4Hz), 3.58 (1H, dd, $J=18$, 6 Hz), 4.12 (2H, q, $J=8$ Hz), 4.92 (1H, m), 7.52 (5H, m), 7.92 (2H, d, $J=8$ Hz), 7.94 (2H, d, $J=8$ Hz)
55	F	88.1	3000, 1685, 1650		2.40 (3H, s), 3.59 (1H, dd, $J=18$, 5Hz), 3.77 (1H, dd, $J=18$, 8Hz), 4.80 (1H, dd, $J=8$, 5Hz), 6.92 (1H, d, $J=8$ Hz), 7.19 (1H, t, $J=8$ Hz), 7.29 (1H, t, $J=8$ Hz), 7.43 (3H, m), 7.54 (2H, m), 7.84 (1H, d, $J=8$ Hz), 7.16—7.98 (1H, brs)
56	$^{\circ}$ C	62.3	1710, 1670		1.99 (1H, d, J = 12 Hz), 2.95 (1H, dd, J = 18, 6 Hz), 3.28 (1H, dd, J = 18, 9 Hz), 4.45 - 4.58 (1H, m), 7.22 (2H, d, J = 9 Hz), 7.39 - 7.58 (5H, m), 7.87 (2H, d, J = 9 Hz), 10.10 (1H, brs)
57	C	77.8	2550, 1720, 1675		1.20 (3H, t, $J=8$ Hz), 1.99 (1H, d, $J=12$ Hz), 2.90 (1H, dd, $J=16$, 5 Hz), 3.24 (1H, dd, $J=16$, 9 Hz), 4.12 (2H, q, $J=8$ Hz), 4.58 (1H, dd, $J=9$, 5 Hz), 7.24 (2H, d, $J=9$ Hz), 7.42 (2H, d, $J=9$ Hz), 7.42 (1H, m), 7.52 (2H, m), 7.90 (2H, d, $J=9$ Hz)
58	. C	82.9	1700—1660		2.32 (3H, s), 2.76 (1H, dd, $J=16$, 5 Hz), 3.29 (1H, dd, $J=16$, 10 Hz), 5.43 (1H, dd, $J=10$, 5 Hz), 7.16 (2H, d, $J=9$ Hz), 7.39—7.55 (5H, m), 7.80 (2H, d, $J=9$ Hz)
59	С	87.8	1725, 1680, 1670		1.19 (3H, t, $J=7$ Hz), 2.31 (3H, s), 2.72 (1H, dd, $J=16$, 5 Hz), 3.27 (1H, dd, $J=16$, 10 Hz), 4.10 (2H, q, $J=7$ Hz), 5.50 (1H, dd, $J=10$, 5 Hz), 7.19 (2H, d, $J=9$ Hz), 7.40—7.55 (5H, m), 7.88 (2H, d, $J=9$ Hz)
60	C	58.4	1690, 1677		1.15 (3H, t, $J = 8$ Hz), 2.59 (2H, q, $J = 8$ Hz), 2.76 (1H, dd, $J = 16$, 5 Hz), 3.30 (1H, dd, $J = 16$, 10 Hz), 5.44 (1H, dd, $J = 10$, 5 Hz), 7.16 (2H, d, $J = 9$ Hz), 7.36—7.60 (5H, m), 7.81 (2H, d, $J = 8$ Hz)
61	C	70.0	1710, 1667		2.87 (1H, dd, $J=16$, 5 Hz), 3.41 (1H, dd, $J=16$, 10 Hz), 5.69 (1H, dd, $J=10$, 5 Hz), 7.17 (2H, d, $J=9$ Hz), 7.35—7.72 (8H, m), 7.83—8.20 (4H, m)
62	C	85.6	1693, 1665	C	1.92 (3H, s), 2.83 (1H, dd, $J=18$, 5Hz), 3.29 (1H, dd, $J=18$, 10 Hz), 4.52 (1H, dd, $J=10$, 5 Hz), 7.21 (2H, d, $J=9$ Hz), 7.36—7.60 (5H, m), 7.89 (2H, d, $J=9$ Hz)

a) See footnote in Table IV.

Compound 14 was similarly prepared from compound 12.

Method E Ethyl 2-Acetamido-3-[4-(phenylthio)benzoyl]propionate (54): A 28% NH₄OH aqueous solution (14 ml) was added dropwise to a stirred solution of ethyl 3-[4-(phenylthio)-benzoyl]acrylate (7.21 g) in acetone (50 ml). The mixture was stirred for 3 h at room temperature and acetone was removed under reduced pressure. The residue was suspended in H₂O and the whole was extracted with AcOEt. The extract was washed with H₂O, dried (MgSO₄) and concentrated. The residue was dissolved in Et₂O (100 ml), and a mixture of pyridine (5 ml) and acetyl chloride (5.0 g) was added with stirring. The stirring was continued for 3 h at room

temperature, and the reaction mixture was washed with H_2O , dried (MgSO₄) and concentrated. The residue was purified by column chromatography on silica gel with Et₂O-hexane (1:6, v/v) as an eluent, then recrystallized from Et₂O-hexane to give **54** (5.07 g, 59.3%). Anal. Calcd for $C_{20}H_{21}NO_4S$: C, 64.67; H, 5.70; N, 3.77. Found: C, 64.80; H, 5.68; N, 3.76.

Method F 2-(Phenylthio)benzoic Acid: A mixture of 2-mercaptobenzoic acid (30.3 g), bromobenzene (23.1 ml), CuCl (3.0 g), K₂CO₃ (40.0 g) and DMF (450 ml) was refluxed for 6 h, and the precipitate was filtered off. The filtrate was added to H₂O, and the whole was acidified with aqueous 10% HCl. The reaction mixture was extracted with AcOEt, dried (MgSO₄)

and concentrated. The residue was recrystallized from AcOEt-hexane to give colorless needles (32.4 g, 74.0%), mp 120—125 °C.

2-(Phenylthio)acetophenone: A tetrahydrofuran (THF) solution of 1.6 m methyllithium (151 ml) was added dropwise to a stirred solution of 2-(phenylthio)acetophenone (25.0 g) in THF (110 ml) at $-50\,^{\circ}$ C in an atmosphere of nitrogen, and the mixture was stirred for 1 h at room temperature. The mixture was neutralized with aqueous NH₄Cl, and the whole was extracted with Et₂O. The extract was washed with H₂O, dried (MgSO₄) and concentrated. The residue was purified by column chromatography on silica gel with Et₂O-hexane (1:4, v/v) to give a colorless oil (18.0 g, 71.6%).

3-[2-(Phenylthio)benzoyl]acrylic Acid: Prepared from 2-(phenylthio)acetophenone and glyoxylic acid monohydrate according to method B, (51.3%), mp 119—120 °C (from Et₂O-hexane). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1690, 1655. NMR (CDCl₃) δ : 6.80 (1H, d, J=16 Hz), 7.10 (1H, d, J=8 Hz), 7.24—7.51 (7H, m), 7.80 (2H, J=8 Hz), 7.90 (1H, J=8 Hz), 9.70 (1H, br s).

Preparation of the Ester Derivatives of 3-Benzoylacrylic Acid Ethyl 3-[4-(Phenylthio)benzoyl]acrylate: 3-[4-(Phenylthio)-benzoyl]acrylic acid (56.8 g) and $\rm Et_2SO_4$ (37.0 g) were dissolved in DMF (50 ml), then $\rm K_2CO_3$ (16.6 g) was added with stirring. The mixture was stirred for an additional 3 h at room temperature, then suspended in $\rm H_2O$, and the whole was extracted with $\rm Et_2O$. The extract was washed with $\rm H_2O$, dried (MgSO₄) and concentrated. The residue was recrystallized from $\rm CH_2Cl_2$ -hexane to give yellow needles (5.17 g, 82.8%), mp 74—75°C. $\rm IRv_{max}^{KBr} cm^{-1}$: 1720, 1660. NMR (CDCl₃) δ : 1.33 (3H, t, J=7 Hz), 4.29 (2H, q, J=7 Hz), 6.86 (1H, d, J=16 Hz), 7.23 (2H, d, J=9 Hz), 7.41—7.56 (5H, m), 7.87 (1H, d, J=16 Hz), 7.88 (2H, d, J=9 Hz),

The following compounds were similarly prepared. Ethyl 3-[4-(4-Chlorobenzoylamino)benzoyl]acrylate: mp 186—187 °C (from AcOEt), 67%. Ethyl 3-[4-(2-Benzoylaminoethyl)benzoyl]acrylate: mp 151—152 °C (from AcOEt), 87%. Ethyl 3-[4-(2-(4-Chlorobenzoyl)aminoethyl)benzoyl]acrylate: mp 128—129 °C (from AcOEt), 86%. Ethyl 4-[6-(3,4-Dihydro-2-(1H)-quinolone)]-4-oxo-2-butenoate: mp 190—192 °C (from AcOEt),

71%. Ethyl 4-(5-Oxindole-4-oxo-2-butenoate: Oil, 89%. Ethyl 4-(2-Dibenzothienyl)-4-oxo-2-butenoate: mp 87.5—88.5°C (from CHCl₃-hexane), 77%. Ethyl 4-(2-Dibenzofuranyl)-4-oxo-butenoate: mp 100—102°C (from AcOEt-hexane), 80%. Ethyl 4-[3-(9-Acetylcarbazoyl)]-4-oxo-2-butenoate: mp 124—127°C, 74%. Ethyl 4-[3-(9-Methylcarbazoyl)]-4-oxo-2-butenoate: mp 120—122°C (from AcOEt-hexane), 85%. Isopropyl 3-[4-(Phenylthio)benzoyl]acrylate: mp 59—60°C (from CH₂Cl₂-hexane), 80%. *n*-Butyl 3-[4-(Phenylthio)benzoyl]acrylate: mp 40—43°C (from CH₂Cl₂-hexane), 73%. Benzyl 3-[4-(Phenylthio)benzoyl]acrylate: mp 85—86°C (from CH₂Cl₂-hexane), 83%.

References and Notes

- a) K. Tomisawa, K. Kameo, T. Matsunaga, S. Saito, K. Hosoda, Y. Asami and K. Sota, Chem. Pharm. Bull., 33, 2386 (1985); b) Idem, ibid., 34, 701 (1986).
- K. Kameo, K. Ogawa, T. Takeshita, S. Nakaike, K. Tomisawa and K. Sota, Chem. Pharm. Bull., 36, 2050 (1988).
- a) K. Thiele, Q. Ahmed, U. Jahn and R. W. Adrian, Arzneim.-Forsch,
 29, 711 (1979); b) R. W. Adrian, S. Ismail and U. Jahn, ibid., 33, 1464 (1983).
- A. G. Olsson, S. Rossner, G. Walldius, L. A. Carlson and P. D. Lang, Atherosclerosis, 27, 279 (1977).
- H. Cousse, G. Mouzin, J. P. Rieu and A. Delhon, Ger. Patent 2513157 (1975) [Chem. Abstr., 84, 58936 (1975)].
- 6) J. M. Thorp and W. S. Waring, Nature (London), 194, 948 (1962).
- A part of this work was presented at the 107th Annual Meeting of the Pharmaceutical Society of Japan, Kyoto, Apr. 1987.
- R. G. Child, A. C. Osterberg, A. E. Sloboda and A. S. Tomcufcik, J. Pharm. Sci., 66, 466 (1977).
- D. Papa, E. Schwenk, F. Villani and E. Klingsberg, J. Am. Chem. Soc., 70, 3356 (1948).
- G. Baddeley, G. Holt, S. M. Makar and M. G. Ivinson, J. Chem. Soc., 1952, 3605.