Synthesis of New Isoquinolinequinone Metabolites of a Marine Sponge, Xestospongia sp., and the Nudibranch Jorunna funebris

Akinori Kubo,* Yoshiyasu Kitahara and Shinsuke Nakahara

Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya-ku, Tokyo 154, Japan. Received October 18, 1988

Three isoquinolinequinone metabolites of a marine sponge, Xestospongia sp., and the nudibranch Jorunna funebris, i.e. renierol propionate (3), N-formyl-1,2-dihydrorenierol acetate (7) and N-formyl-1,2-dihydrorenierol propionate (8), were synthesized.

Keywords synthesis; isoquinolinequinone; antimicrobial metabolite; renierol; renierol propionate; *N*-formyl-1,2-dihydrorenierol acetate; *N*-formyl-1,2-dihydrorenierol propionate; marine sponge; ¹H-NMR; ¹³C-NMR

During the past ten years several naturally occurring isoquinolinequinones have been isolated from marine sponges as well as from Actinomycetes.¹⁾ Faulkner and co-workers reported the isolation and the structural determination of renierone (1), 7-methoxy-1,6-dimethyl-5,8-isoquinolinedione (4) and N-formyl-1,2-dihydrorenierone (equilibrated in solution to a 2:1 mixture of two inseparable rotamers, 6a and 6b) from a marine sponge, Reniera sp.^{2,3)} In 1987, McKee and Ireland isolated renierol (5) from a hard blue sponge, Xestospongia caycedoi.⁴⁾ Furthermore, very recently four new isoquinolinequinone metabolites, i.e. renierol acetate (2), renierol propionate (3), N-formyl-1,2-dihydrorenierol acetate (7) and N-formyl-1,2-dihydrorenierol propionate (8), have been isolated from a

marine sponge, *Xestospongia* sp., and its associated nudibranch *Jorunna funebris*⁵⁾ (Chart 1). All four isoquinolinequinones, 2, 3, 7 and 8 showed activity against *Bacillus subtilis* and *Staphylococcus aureus*. We have already synthesized the isoquinolinequinones, 1, 2, and 4—6.^{6,7)} Now we wish to report the synthesis of three other isoquinolinequinones, 3, 7 and 8.

Treatment of 1-hydroxymethyl-7-methoxy-6-methyl-5,8-isoquinolinedione (renierol, 5)⁶⁾ with propionyl chloride in pyridine furnished (7-methoxy-6-methyl-5,8-dioxo-5,8-dihydro-1-isoquinolyl)methyl propionate (renierol propionate, 3), mp 89—90 °C in 84% yield. The ester 3 thus obtained was identical with the natural product in terms of infrared (IR), ultraviolet (UV), proton and carbon-13

Chart 1

TABLE I. 1H-NMR Data for 6, 7 and 8a)

H at C No.b)	6a ^{c)}	6b ^{c)}	7a	7b	8a	8b 5.32 (dd, 9.5, 3.7)	
1	5.99 (dd, 4, 3)	5.37 (dd, 9, 4)	5.94 (dd, 4.9, 3.7)	5.31 (dd, 9.8, 4.0)	5.95 (dd, 4.9, 3.4)		
3	6.92 (d, 8)	7.45 (d, 8)	6.92 (d, 7.6)	7.43 (d, 7.6)	6.92 (d, 7.6)	7.43 (d, 7.6)	
4	6.03 (d, 8)	6.25 (d, 8)	6.06 (d, 7.6)	6.23 (dd, 7.6, 1.2)	6.05 (d, 7.6)	6.22 (dd, 7.6, 1.2)	
11	1.95 (s)	1.98 (s)	1.96 (s)	1.98 (s)	1.96 (s)	1.98 (s)	
12	4.05 (s)	4.07 (s)	4.07 (s)	4.05 (s)	4.07 (s)	4.05 (s)	
13	8.43 (s)	8.22 (s)	8.42 (s)	8.23 (brs)	8.42 (s)	8.22 (brs)	
14	4.21 (dd, 12, 3)	3.91 (dd, 12, 4)	4.18 (dd, 11.9, 3.7)	3.81 (dd, 11.3, 4.0)	4.18 (dd, 11.9, 3.4)	3.82 (dd, 11.3, 3.7)	
14	4.37 (dd, 12, 4)	4.24 (dd, 12, 9)	4.24 (dd, 11.9, 4.9)	4.16 (dd, 11.3, 9.8)	4.27 (dd, 11.9, 4.9)	4.21 (dd, 11.3, 9.5)	
16			1.97 (s)	2.08 (s)	2.24 (q, 7.6)	2.35 (q, 7.6)	
17	6.06 (q, 7)	6.15 (q, 7)	``	()	1.06 (t, 7.6)	1.14 (t. 7.6)	
18	1.77 (brs)	1.87 (brs)			, ,		
19	1.91 (d, 7)	2.00 (d, 7)					

a) Multiplicities and coupling constants (Hz) in parentheses. b) See Chart 1. c) Reference 3.

nuclear magnetic resonance (¹H- and ¹³C-NMR), and mass spectra. The ¹³C-NMR signals of 3 were easily assigned by comparison with the spectrum of 1 (Table II).

The N-formylisoquinolinequinones 7 and 8 were synthesized from N-formyl-1-hydroxymethyl-5,7,8-trimethoxy-6methyl-1,2,3,4-tetrahydroisoquinoline $(9)^{6}$ (Chart 2). The ester (10), prepared by treatment of 9 with acetyl chloride in pyridine, was oxidized with ceric ammonium nitrate (CAN) to give the p-quinone 12 (52% yield) but no o-quinone isomer. The p-quinone structure for 12 was confirmed by independent synthesis from the p-quinone 15 prepared by Fremy's salt oxidation of the 8-amino-1,2,3,4-tetrahydroisoquinoline 14.6) Treatment of 15 with acetyl chloride in pyridine afforded the p-quinone 12 (80% yield), which was identical with the quinone obtained from 10 (1H-NMR, IR and mass spectra). Dehydrogenation of 12 with 10% palladium on carbon in refluxing benzene furnished Nformyl-1,2-dihydrorenierol acetate (7) in 48% yield. Similarly, N-formyl-1,2-dihydrorenierol propionate (8) was

Chart 2

TABLE II. 13C-NMR Data for 1, 3, 6, 7 and 8

C No.	1 ^{a)}	3	6a ^{a)}	6b ^{a)}	7a	7b	8a	8b
1	156.6	156.77	47.3	49.7	47.28	49.61	47.33	49.64
3	153.8	153.95	133.2	129.3	133.35	129.36	133.26	129.32
4	118.2	118.42	100.8	102.8	100.96	102.88	100.91	102.82
5	184.2	184.46	184.7	184.6	184.91	184.70	184.86	184.66
6	130.3	130.54	127.0	127.9	127.31	128.12	127.18	128.05
7	158.2	158.47	156.2	155.9	156.28	156.02	156.24	155.97
8	181.5	181.71	180.1	180.1	180.24	180.27	180.19	180.23
9	122.5	122.70	123.9	123.1	123.81	123.13	123.81	123.11
10	138.7	138.93	135.4	136.1	135.58	136.28	135.50	136.23
11	9.2	$9.13^{b)}$	8.5	8.6	8.66	8.76	$8.59^{b)}$	$8.70^{b)}$
12	61.2	61.23	61.0	61.0	61.16	61.16	61.13	61.13
13			162.1	161.2	162.17	161.28	162.09	161.24
14	65.3	65.37	63.0	60.8	63.09	61.27	63.07	61.11
15	167.6	174.33	167.2	166.6	170.79	170.14	174.15	173.55
16	127.7	27.43	126.9	126.5	20.73	20.64	27.39	27.30
17	137.8	$9.04^{b)}$	139.6	140.6			8.91b)	$8.86^{b)}$
18	20.7		20.5	20.4				
19	15.8		15.6	15.8				

a) Reference 7. b) Assignments may be interchanged.

synthesized from 9. Our synthetic N-formylisoquinoline-quinones, 7 and 8, were identical with the corresponding natural product in terms of IR, UV, ¹H- and ¹³C-NMR, and mass spectra. Finally we confirmed that 7 and 8 were each equilibrated in solution to an approximately 2:1 mixture of two inseparable rotamers (7a and 7b, and 8a and 8b, respectively) by examination of the ¹H- and ¹³C-NMR spectra (Tables I and II). Other N-formylisoquinolines 10—13 were also equilibrated to a mixture of cis and trans rotamers⁸⁾ as judged from the ¹H-NMR spectra, which displayed characteristic chemical shift differences for the two rotamers. The chemical shift values for the pertinent protons are given in the experimental section.

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. H- and ¹³C-NMR spectra were recorded in CDCl₃ at 400 and 100.4 MHz, respectively, with tetramethyl-silane as an internal standard.

Esterification of Renierol (5) Propionyl chloride (93 mg, 1 mmol) was added to an ice-cooled solution of renierol 5 (117 mg, 0.5 mmol) in dry pyridine (1 ml) with stirring. The mixture was stirred for an additional 10 min, then diluted with water and extracted with CHCl₃. The extract was washed with brine, dried over Na₂SO₄ and evaporated. The residual solid was recrystallized from methanol to give 122 mg (84%) of renierol propionate (3) as yellow needles melting at 89—90 °C. Anal. Calcd for C₁₅H₁₅NO₅: C, 62.28; H, 5.23; N, 4.84. Found: C, 62.27; H, 5.19; N, 4.81. MS m/z: 289 (M⁺, 0.4), 233 (M⁺ – COC₂H₅ + H, 100), 57 (COC₂H₅, 71), IR $\nu_{\text{max}}^{\text{KB}}$ cm⁻¹: 2950, 1750, 1672, 1652, 1614, 1570, 1306, 1216, 1162, 1112. UV $\lambda_{\text{max}}^{\text{methanol}}$ nm (log ε): 246 (4.25), 318 (3.70). ¹H-NMR δ : 1.21 (3H, t, J=7.6 Hz, CH₃CH₂), 2.09 (3H, s, C₆-CH₃), 2.51 (2H, q, J=7.6 Hz, CH₃CH₂), 4.15 (3H, s, OCH₃), 5.71 (2H, s, CH₂O), 7.88 (1H, d, J=5.2 Hz, C₄-H), 8.92 (1H, d, J=5.2 Hz, C₃-H). ¹³C-NMR: see Table II.

Esterification of 9 and N-Formyl-1-hydroxymethyl-7-methoxy-6-methyl-1,2,3,4-tetrahydro-5,8-isoquinolinedione (15) Acetyl chloride (or propionyl chloride) (1 mmol) was added to an ice-cooled solution of 9 (or 15) (0.5 mmol) in dry pyridine (1 ml) with stirring. The mixture was stirred for an additional 10 min, then diluted with water and extracted with CHCl₃. The extract was washed with brine, dried over Na₂SO₄ and evaporated. The residue was chromatographed on a silica gel column using benzene-ethyl acetate as the eluent to give 10 (or 11, 12, 13) as an oil.

(*N*-Formyl-5,7,8-trimethoxy-6-methyl-1,2,3,4-tetrahydro-1-isoquinolyl)methyl Acetate (**10**): Yield 99%. MS m/z: 337 (M⁺, 2), 264 (M⁺ - CH₂OCOCH₃, 100). High-resolution MS Calcd for C₁₇H₂₃NO₆: 337.1525. Found: 337.1528. IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 1744, 1674 (C=O). ¹H-NMR δ: 2.04 and 2.09 (3H, each s, CH₃CO), 2.19 and 2.20 (3H, each s, C₆-CH₃), 3.66 (3H, s, OCH₃), 3.78 and 3.79 (3H, each s, OCH₃), 3.91 and 3.93 (3H, each s, OCH₃), 8.21 and 8.24 (1H, each s, CHO).

(*N*-Formyl-5,7,8-trimethoxy-6-methyl-1,2,3,4-tetrahydro-1-isoquinolyl)methyl Propionate (11): Yield 87%. MS m/z: 351 (M⁺, 2), 264 (M⁺ - CH₂OCOC₂H₅, 100). High-resolution MS Calcd for C₁₈H₂₅NO₆: 351.1682. Found: 351.1685. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1740, 1676 (C=O). ¹H-NMR δ :1.11 and 1.15 (3H each t, J=7.6 Hz, CH₃CH₂), 2.19 and 2.20 (3H, each s, C₆-CH₃), 2.38 and 2.46 (2H, each q, J=7.6 Hz, CH₃CH₂), 3.66 and 3.67 (3H, each s, OCH₃), 3.78 and 3.79 (3H, each s, OCH₃), 3.91 and 3.93 (3H, each s, OCH₃), 8.21 and 8.23 (1H, each s, CHO).

(*N*-Formyl-7-methoxy-6-methyl-5,8-dioxo-1,2,3,4,5,8-hexahydro-1-isoquinolyl)methyl Acetate (12): Yield 80%. MS m/z: 307 (M⁺, 11), 234 (M⁺ - CH₂OCOCH₃, 100). High-resolution MS Calcd for C₁₅H₁₇NO₆: 307.1056. Found: 307.1029. IR $\nu_{\rm max}^{\rm KB}$ cm⁻¹: 1742, 1678, 1658 (C=O). ¹H-NMR δ : 1.95 and 1.97 (3H, each s, C₆-CH₃), 2.02 and 2.08 (3H, each s, CH₃CO), 4.03 and 4.05 (3H, each s, OCH₃), 8.14 and 8.20 (1H, each s, CHO)

(*N*-Formyl-7-methoxy-6-methyl-5,8-dioxo-1,2,3,4,5,8-hexahydro-1-isoquinolyl)methyl Propionate (13): Yield 81%. MS m/z: 321 (M⁺, 9), 234 (M⁺ - CH₂OCOC₂H₅, 100). High-resolution MS Calcd for C₁₆H₁₉NO₆: 321.1212. Found: 321.1229. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1740, 1678, 1656 (C=O). ¹H-NMR δ : 1.08 and 1.13 (3H, each t, J=7.6 Hz, CH₃CH₂), 1.95 and 1.97 (3H, each s, C₆-CH₃), 2.29 and 2.36 (2H, each q, J=7.6 Hz, CH₃CH₂), 4.03 and 4.05 (3H, each s, OCH₃), 8.13 and 8.19 (1H, each s, CHO).

Oxidative Demethylation of 10 and 11 A solution of CAN (548 mg,

1 mmol) in water (2 ml) was added dropwise to an ice-cooled solution of 10 (or 11) (0.2 mmol) in acetonitrile (4 ml) containing suspended pyridine-2,6-dicarboxylic acid N-oxide (183 mg, 1 mmol) with stirring. The mixture was stirred at 0-5 °C for 2 h, then diluted with water, adjusted to pH 9 with 5% NaHCO₃, and extracted with CH₂Cl₂. The extract was washed with brine, dried over Na₂SO₄ and evaporated. The residue was chromatographed on a silica gel column using 40-70% ethyl acetate in hexane as the eluent to give 12 (52% yield) (or 13, 56% yield) as an oil. The quinones 12 and 13 thus obtained were identical with the corresponding p-quinone prepared by the esterification of 15 (MS, IR and 1 H-NMR spectra).

Dehydrogenation of 12 and 13 A solution of 12 (or 13) (30 mg) in benzene (5 ml) containing 10% palladium on carbon (120 mg) as a catalyst was refluxed for 24 h with stirring. The catalyst was filtered off and the solvent was removed. The residue was chromatographed on a silica gel column using 30—40% ethyl acetate in hexane as the eluent to give 7 (or 8) as a dark red oil.

N-Formyl-7-methoxy-6-methyl-5,8-dioxo-1,2,5,8-tetrahydro-1-isoquinolyl)methyl Acetate (*N*-Formyl-1,2-dihydrorenierol Acetate, 7): Yield 48%. MS m/z: 305 (M⁺, 3), 232 (M⁺ – CH₂OCOCH₃, 100), 204 (M⁺ – CH₂OCOCH₃ – CO, 98). High-resolution MS Calcd for C₁₅-H₁₅NO₆: 305.0899. Found: 305.0880. IR $v_{\rm max}^{\rm KBr} {\rm cm}^{-1}$: 2957, 1744, 1702, 1648, 1615, 1552, 1440, 1390, 1324, 1286, 1264, 1224, 1186, 1150, 1047, 947, 747, 718. UV $\lambda_{\rm max}^{\rm methanol}$ nm (log ε): 269 (3.99), 340 (3.54), 500 (3.19). ¹H-NMR: see Table II. ¹³C-NMR: see Table II.

(N-Formyl-7-methoxy-6-methyl-5,8-dioxo-1,2,5,8-tetrahydro-1-iso-quinolyl)methyl Propionate (N-Formyl-1,2-dihydrorenierol Propionate, 8): Yield 53%. MS m/z: 319 (M⁺, 3), 232 (M⁺ - CH₂OCOC₂H₅, 100), 204 (M⁺ - CH₂OCOC₂H₅ - CO, 93). High-resolution MS Calcd for C₁₆H₁₇NO₆: 319.1055. Found: 319.1015. IR v_{max}^{KBF} cm⁻¹: 2947, 1742,

1702, 1648, 1617, 1554, 1440, 1385, 1324, 1286, 1266, 1204, 1188, 1146, 1090, 947, 747, 720. UV $\lambda_{\max}^{\text{methanol}}$ nm (log ϵ): 268 (4.00), 340 (3.57), 500 (3.24). 1 H-NMR: see Table I. 13 C-NMR: see Table II.

Acknowledgement We are grateful to Dr. N. K. Gulavita, Department of Chemistry, University of Hawaii, for providing us with the spectral data of the natural products.

References

- 1) a) T. Arai and A. Kubo, "The Alkaloids," Vol. XXI, ed. by A. Brossi, Academic Press, New York, 1983, pp. 55—100; b) C. Christophersen, ibid., Vol. XXIV, 1985, pp. 25—111; c) R. H. Thomson, "Naturally Occurring Quinones," Vol. III, Chapman and Hall, London, 1987, pp. 633—671.
- D. E. McIntyre, D. J. Faulkner, D. V. Engen and J. Clardy, Tetrahedron Lett., 1979, 4163.
- 3) J. M. Frincke and D. J. Faulkner, J. Am. Chem. Soc., 104, 265 (1982).
- 4) T. C. McKee and C. M. Ireland, J. Nat. Prod., 50, 754 (1987).
- 5) a) E. D. de Silva and N. K. Gulavita, Abstracts of Papers, 16th IUPAC International Symposium on the Chemistry of Natural Products, Kyoto, May 1988, Pa 8 (p. 610); b) Ph. D. Dissertation of N. K. Gulavita, University of Hawaii.
- A. Kubo, S. Nakahara, K. Inaba and Y. Kitahara, Chem. Pharm. Bull., 34, 4056 (1986).
- 7) Y. Kitahara, S. Nakahara, R. Numata, K. Inaba and A. Kubo, Chem. Pharm. Bull., 33, 823 (1985).
- Cs. Szántay, G. Blaskó, M. Bárczai-Beke, G. Dörnyei and L. Radicus, Heterocycles, 14, 1127 (1980).