Communications to the Editor

A NEW NITRATION PRODUCT, 3-NITRO-4-ACETAMIDOPHENOL, OBTAINED FROM ACETAMINOPHEN WITH NITROUS ACID

Takanobu MATSUNO, Tomoko MATSUKAWA, Yoshiharu SAKUMA, and Takehisa KUNIEDA*
Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan

Treatment of acetaminophen with an excess sodium nitrite under mildly acidic to neutral conditions results in smooth formation of new 3-nitro-4-acetamidophenol via N-acetyl-p-benzo-quinone imine as an oxidation intermediate, which is a well-known, widely explored metabolite.

KEYWORDS acetaminophen; sodium nitrite; nitration; N-acetyl-p-benzoquinone imine; 3-nitro-4-acetamidophenol

There is still considerable interest in the metabolic chemistry of the widely used analgesic and antipyretic drugs acetaminophen $(p\text{-}acetamidophenol)^1)$ and phenacetin, and related compounds. A recent paper on the reaction of p-acetaminophen with nitrite under gastric conditions has promted us to report our results on a new nitration product.

As part of synthesis study of methoxatin, we have found quite smooth formation of 3-nitro-4-acetamidophenol (3) on the treatment of acetaminophen (1) with sodium nitrite commonly used as a food additive at the relatively wide pH range of 3 to 7.5) Thus, p-acetamidophenol (1) was treated at 0°C with a five-molar excess of sodium nitrite in aqueous acetic acid at pH4 or in a phosphate-buffer solution at pH7 to give the 3-nitrated phenol (3)⁶) (mp 139°C) in 81% yield. The structure of this product was unequivocally determined by reductive conversion to 3,4-diacetamidophenyl acetate (4)⁶) (mp 181°C) which was distinctly different from the authentic 2,4-diacetamidophenyl acetate (5)⁶) (mp 195°C) derived from 2,4-dinitrophenol. In contrast to the previous observation,⁴) no nitration occurred at the 2-position of the phenol in this reaction.

This type of aromatic nitration with nitrous acid probably involves the initial formation of an oxidation intermediate, N-acetyl-p-benzoquinone imine (2), followed by the Michael-type addition of nitrite ion. Intermediacy of the quinone imine is suggested by the fact that treatment of the quinone imine purely isolated 7) with sodium nitrite under mildly acidic or neutral conditions resulted in smooth formation of the 3-nitrated product (3) (22% yield), and the nitration of 1 was greatly facilitated by treatment with equimolecular amounts of hydrogen peroxide (at 0°C) followed by the addition of nitrite to give nearly quantitative yield of 3 (above 94%).

a) Zn , CH₃COOH ; b) (CH₃CO)₂O , pyridine

© 1989 Pharmaceutical Society of Japan

The reactive intermediate quinone imine (2) is well recognized as an important hepatotoxic metabolite of the p-aminophenol type of analysics, 1,2,8) and is believed to make nonenzymatically in vivo a covalent bonding with nucleophiles such as the thiol groups on proteins. Our mode of nitrite addition to the quinone imine at the 3-position is in strong contrast to the previous reports that nucleophiles such as the methanethiol, 9) cysteine 10) and glutathione 10) moieties as well as chloride ions 3a) would react with the quinone imine metabolite (2) at the 2-position to give the 2-substituted phenols.

In conclusion, treatment of acetaminophen with an excess nitrous acid gave a high yield of the nitration product, 3-nitro-4-acetamidophenol, contrary to the expectation that nitration would take place at the 2-position. The smooth nitration described in this paper may be of significance particularly in connection with the metabolism of the analgesics, p-acetaminophen and related drugs, since nitrite serves as an oxidizing agent and a good source of nucleophile.

Further structural studies of the nucleophile adducts derived from the quinone imine metabolite are in progress.

REFERENCES AND NOTES

- 1) D.C.Dahlin, G.T.Miwa, A.Y.H.Lu and S.D.Nelson, Proc. Natl. Acad. Sci. U.S.A., 81, 1327 (1984).
- 2) R.Larsson, D.Ross, T.Berlin, L.I.Olsson and P.Moldeus, J. Pharmacol. Exp. Ther., 235, 475 (1985).
- 3) a) M.Novak, M.Pelecanou and L.Pollack, J. Am. Chem. Soc., 108, 112 (1986).
 - b) M.Nova-, M.Pelecanou and J.N.Zemis, J. Med. Chem., 29, 1424 (1986).
 - c) H.H.Lee, B.D.Palmer and W.A.Denny, J. Org. Chem., <u>53</u>, 6042 (1988).
- 4) T.Ohta, H.Oribe, M.Ide and S.Takitani, Chem. Pharm. Bull., 36, 4634 (1988).
- 5) A part of this work has been presented at the annual meetings of Pharmaceutical Society of Japan.

 T.Matsukawa, Y.Sakuma, T.Nagamatsu and T.Kunieda, 105th Annual Meeting, Kanazawa, 1985, Abstracts p 640;

 R.Yoshida, Y.Sakuma and T.Kunieda, 106th Annual Meeting, Chiba, 1986, Abstracts p 480; T.Matsuno, R.

 Yoshida, Y.Sakuma and T.Kunieda, 108th Annual Meeting, Hiroshima, 1988, Abstracts p 123.
- 6) Characterized by elemental and spectral analyses. Spectral data are as follows.
 - (3): ${}^{1}\text{H-NMR}$ (DMSO-d₆) & 2.04 (s,3H), 7.02 (d,1H,J=9.0Hz), 7.72 (d.d,1H,J=9.0Hz and 2.4Hz), 8.87 (d,1H,J=2.4Hz). IR (KBr) 3296, 1664 and 1546 cm⁻¹. MS m/z 196 (M⁺).
 - (4): ${}^{1}\text{H-NMR}$ (DMSO-d₆) & 2.03 (s,3H), 2.15 (s,6H), 7.16 (d,1H,J=9.0Hz), 7.54 (d.d,1H,J=9.0Hz and 3.0Hz), 7.60 (d,1H,J=3.0Hz). IR (KBr) 1768 and 1673 cm⁻¹. MS m/z 250 (M⁺).
 - (5): ${}^{1}\text{H-NMR}$ (DMSO-d₆) & 2.01 (s,3H), 2.04 (s,3H), 2.24 (s,3H), 6.92 (d,1H,J=9.6Hz), 7.41 (d.d,1H,J=9.6 and 2.4Hz), 7.96 (d,1H,J=2.4Hz). IR (KBr) 1759 and 1671 cm⁻¹. MS m/z 250 (M⁺).
- I.A.Blair, A.R.Boobis and D.S.Davies, Tetrahedron Lett., <u>21</u>, 4947 (1980); D.C.Dahlin and S.D.Nelson,
 J. Med. Chem., <u>25</u>, 885 (1982).
- 8) E.Albano, M.Rundgren, P.J.Harvison, S.D.Nelson and P.Moldeus, Mol. Pharmacol., 28, 306 (1986).
- 9) A.Focella, P.Heslin and S.Teitel, Can. J. Chem., <u>50</u>, 2025 (1972).
- 10) J.J.Harding, Adv. in Protein Chem., <u>37</u>, 247 (1985).

(Received March 6, 1989)