A NEW FLAVANONE, NEOLINDERATONE, FROM LINDERA UMBELLATA THUNB. VAR. LANCEA MOMIYAMA

Kazuhiko ICHINO, Hitoshi TANAKA and Kazuo ITO*

Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya 468, Japan

From the fresh leaves of <u>Lindera umbellata</u> Thunb. var. <u>lancea</u> Momiyama a new flavanone, named neolinderatone (6), was isolated and the structure was established by spectroscopic and chemical means as $(2\underline{S},3"\underline{S},4"\underline{R},3"'\underline{S},4"'\underline{R})-5,7$ -dihydroxy-6,8-bis(4-isopropyl-1-methylcyclohex-1-en-3-yl)flavanone.

KEYWORDS Lauraceae; <u>Lindera umbellata</u> var. <u>lancea</u>; linderatin; linderatone; methyllinderatin; neolinderatin; neolinderachalcone; neolinderatone; flavanone; <u>p</u>-menthene

Previously, we reported 1-3) the isolation and the structural elucidation of five novel flavonoids, linderatin (1), linderatone (2), methyllinderatin (3), neolinderatin (4) and neolinderachalcone (5), having p-menthene substituents from the leaves of <u>Lindera umbellata</u> Thunb. var. <u>lancea</u> Momiyama. Further examination of the <u>n</u>-hexame extract of this plant led to the isolation of a novel flavanone derivative, named neolinderatone (6). The present paper describes the structure and the synthesis of this compound.

Neolinderatone (6), a viscous oil, $[\alpha]_D$ +22.0° (c=0.25, CHCl₃), gave a dark bluish color with ethanolic ferric chloride and was positive to the magnesium-hydrochloric acid test. The IR spectrum showed absorption bands for hydroxy1 (3350 cm^{-1}) and conjugated carbony1 (1620 cm^{-1}) groups. The molecular formula was determined to be $C_{35}H_{44}O_4$ by the high-resolution mass spectrum (m/z 528.3264). In the ¹H-NMR spectrum (CDC13) of neolinderatone, signals of six methyl groups (δ 0.81, 0.82, and 0.84, 12H, d x 3, J=6.7 Hz, 8"and 8"'-Me; δ 1.72 and 1.75, 6H, s x 2, 1"- and 1"'-Me), a methylene group (δ 2.80, 1H, dd, J=2.7, 17.1 Hz, $3-H_{eq}$; δ 3.04, 1H, dd, J=13.5, 17.1 Hz, $3-H_{ax}$), two benzylic methine protons (δ 3.78 and 3.88, 2H, br s x 2, 3"- and 3"'-H), a benzylic methine proton adjacent to an oxygen atom (δ 5.26, 1H, dd, J=2.7, 13.5 Hz, 2-H), two olefinic protons (δ 5.34 and 5.38, 2H, br s x 2, 2"- and 2"'-H), a hydroxyl group (δ 6.92, 1H, s, 7-OH), a phenyl group (δ 7.37-7.42, 5H, m), and a chelated hydroxyl group (δ 12.48, 1H, s, 5-OH) were The 13 C-NMR spectrum was very similar to that of linderatone (2) $^{1)}$ except for the signal of C-6 (δ 110.6, s) and the presence of the six signals (δ 17.1, 23.6, 28.9, 35.4, 125.4 and 139.1) assigned for another monoterpene unit (Table I). The mass spectrum of neolinderatone showed a molecular ion peak at m/z528 indicating an increase of 136 mass units in comparison with that of 2. This spectrum also had the characteristic fragmentation peak at m/z 458 (M+-70) which was formed by the retro Diels-Alder reaction of a p-menthene unit as in 2. These results suggest that neolinderatone should be a 6-terpenylated derivative of 2, and the stereochemistry of its flavanone skeleton was fixed to the $2\underline{S}$ configuration, as in 2, according to the CD spectrum ($[\theta]_{290}$ -2.0 x 10^4). Therefore, the structure of this compound appeared to be **6**.

To confirm the structure and absolute configuration of neolinderatone, the following experiments were carried out. Treatment of 5,7-dihydroxyflavanone (100 mg) with (\underline{R})-(-)- α -phellandrene (53 mg) in the presence of p-toluenesulfonic acid (54 mg) in benzene at room temperature for 30 min gave a mixture of diterpenylated derivatives (6 and 6a, 24 mg) and a mixture of mono-terpenylated derivative (2 and 2a, 32 mg). The mixture (6 and 6a) was identical with neolinderatone in all respects (IR, UV and MS) except for the 1 H NMR spectrum. The 1 H NMR spectrum of this mixture exhibited the signals superimposable on those of the natural specimen, but other signals (δ 0.75, 3H, d, J=6.7 Hz, 8"- or 8"'-Me; δ 2.78, 1H, dd, J=2.7, 17.1 Hz, 3-H_{eq}; δ 2.98, 1H, dd, J=13.5, 17.1 Hz, 3-H_{ax}) attributed to the 2-epi-derivative (6a) were also found.

May 1989 1427

Next, hydrogenolysis of the natural neolinderatone (5 mg) with Raney Ni (W-3) in EtOH afforded a dihydrochalcone derivative (2 mg; [α]_D +17.0°, CHCl₃, c 0.05) which was identical with neolinderachalcone (5)³⁾ in all respects (IR, ¹H NMR and $[\alpha]_D$). Therefore, the absolute structure of neolinderatone was established as $(2\underline{S},3"\underline{S},4"\underline{R},3"'\underline{S},4"'\underline{R})-5,7$ -dihydroxy-6,8-bis(4-isopropy1-1-methylcyclohex-1-en-3-y1)flavanone (6). This is the first flavanone found to have two cyclic monoterpenes on the same benzene ring.

Table I. ¹³C-NMR Chemical Shifts of 2 and 6 in CDCl₂

of 2 and 6 in CDCl ₃			
Carbon	2	6	Υ (O)
C-2	79.1	78.9	RO OH HO
C-3 C-4	43.5	44.2	
C-4a	195.9	196.5	он р
C-4a C-5	102.6 164.8 ^a)	102.7	
C-6	96.6	163.3 ^{a)}	1: R = H
C-7	460.0 160.1a)	110.6	
	162.1 ^{a)}	160.3 ^{a)}	3 : R = Me
C-8 C-8a	110.3	110.6	
C-0a C-1'	161.2 ^a)	158.9 ^a)	
C-2'	138.8	135.1	\sim
C-3'	128.9	128.6	1 1
C-4'	126.2	125.9	
C-5'	126.2 126.2	125.7	1 1 101
C-6'	128.9	125.9 128.6	HO OH HO
C-1"	141.0	139.5b)	
C-1"'	-	139.1b)	
C-2"	124.5	125.1°)	L OH H
C-2"		125.4 ^C)	
C-3"	34.4	34.9 ^a)	f
C-3"1	_	35.4 ^d)	4
C-4"	44.1	42.7	
C-4"1	_	42.7	
C-5"	22.1	22.8	7" 6"
C-5"'	-	22.8	5"
C-6"	30.7	30.9	24 3000 5000
C-6"'	-	30.9	3 4
C-7"	23.7	23.7 ^e)	
C-7"1	-	23.6 ^e)	HO 7 0 2 1 3
C-8"	28.0	28.4 ^f)	7" 2" 2" 6 6 4 3
C-8"1	-	28.9 [±])	T 5 1 1
C-9"	16.5	16.6 ⁹)	1 4" Un O
C-9"1	-	17.19)	6 - 8 - 9 -
C-10"	21.8	21.6	J 10‴
C-10"1	-	21.6	
	-		6: (2s)

a-g) · Assignments may be interchanged in each column.

REFERENCES AND NOTES

- 1) K. Ichino, H. Tanaka, and K. Ito, Tetrahedron, 44, 3251 (1988).
- 2) K. Ichino, Phytochemistry, 28, 955 (1989).
- 3) K. Ichino, H. Tanaka, and K. Ito, Chemistry Letters, 1989, 363.
- Both mixtures (2 and 2a, and 6 and 6a) were homogeneous on TLC behavior in a variety of solvent 4) systems, respectively.

6a: (2R)

(Received March 13, 1989)

(2s)

2: 2a: (2R)