NOVEL 19-OXYGENATED STEROLS FROM THE OKINAWAN SOFT CORAL LITOPHYTON VIRIDIS

Kazuo IGUCHI, Shuichi SAITOH and Yasuji YAMADA*
Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan

Two new sterols, litosterol ($\underline{2a}$) and 5,6-epoxylitosterol ($\underline{3a}$), with an oxygen functionality at the C-19 position were isolated from the Okinawan soft coral <u>Litophyton viridis</u>. The structures were elucidated on the basis of spectroscopic analysis.

KEYWORDS soft coral; <u>Litophyton</u> <u>viridis</u>; 19-hydroxylated sterol; ergostane skeleton; litosterol; 5,6-epoxylitosterol; antileukemic activity

Marine sterols have received considerable attention because of the frequent occurrence of unusual structural features $^{1)}$ compared with the sterols from terrestrial origins. In the course of our investigations $^{2)}$ on bioactive substances of Okinawan marine animals, we have isolated two new 19-oxygenated sterols named litosterol ($\underline{2a}$) and 5,6-epoxylitosterol ($\underline{3a}$) from the soft coral Litophyton viridis. The sterol $\underline{3a}$ showed an antileukemic activity (IC $_{50}$ 0.5 μ g/ml) against P388 leukemia cells \underline{in} vitro. This paper describes the isolation and structure elucidation of these sterols on the basis of spectroscopic analysis.

The methanol extract of <u>Litophyton viridis</u> (wet weight 6.5 kg), collected at the coral reef of Ishigaki Island (Okinawa, Japan), was suspended in water and then extracted with ethyl acetate. The ethyl acetate-soluble portion (110 g) was subjected to repeated silica gel column chromatography to give ergosta-5,24(28)-dien-3 β -ol (24-methylenecholesterol) (1) (308 mg, mp 134.5-135.5°C), litosterol (2a) (18 mg, $C_{28}^{H}_{46}O_{2}$, mp 147.5-150°C), and 5,6-epoxylitosterol (3a) (80 mg, $C_{28}^{H}_{46}O_{3}$, mp 179-183°C).

The IR spectrum of litosterol ($\underline{2a}$) showed the presence of a hydroxy group (3600 cm⁻¹) and a terminal methylene group (1640, 890 cm⁻¹). The presence of a primary hydroxy group and a secondary hydroxy group was shown by the 1 H-NMR (270 MHz, CDCl $_3$) [δ_{ppm} 3.59 (lH, d, J = 11.2 Hz), 3.80 (lH, d, J = 11.2 Hz), 3.56 (lH, m)] and 13 C-NMR (67.8 MHz, CDCl $_3$) [δ_{ppm} 62.7 (t), 71.4 (d)] spectra. Acetylation of $\underline{2a}$ gave the diacetate $\underline{2b}^{5}$) [1 H-NMR 3.98 (lH, d, J = 12.0 Hz), 4.46 (lH, d, J = 12.0 Hz), 4.64 (lH, m); 13 C-NMR 64.5 (t), 73.4 (d)], clearly indicating the presence of primary and secondary hydroxy groups in $\underline{2a}$. The 1 H- and 13 C-NMR spectra of $\underline{2a}$ also showed the signals due to four methyl groups [1 H-NMR 0.73 (3H, s), 0.94 (3H, d, J = 6.6 Hz), 1.02 (6H, d, J = 6.6 Hz)], a terminal methylene group [1 H-NMR 4.65 (lH, br s), 4.71 (lH, br s); 13 C-NMR 105.9 (t), 156.8 (s)], and a trisubstituted olefin [1 H-NMR 5.75 (lH, br d, J = 4.0 Hz); 13 C-NMR 127.3 (d), 135.6 (s)]. These findings suggested that litosterol ($\underline{2a}$) had a structure similar to that of ergosta-5,24(28)-dien-3 $\underline{9}$ -ol ($\underline{1}$). The chemical shifts of the 13 C signals of $\underline{2a}$ are closely related to those of $\underline{1}^{7}$) as shown in Table I, except for the lack of the 19-methyl signal (19.4 ppm) present in $\underline{1}$, and the appearance of the signal (62.7 ppm) due to the hydroxymethyl group, 8 0 accompanied with a little changes in the chemical shifts of the signals at C-1, -5, -6, and -10 positions which are neighbors of the C-19 position. From these findings, the structure of litosterol was assigned to be ergosta-5,24(28)-diene-3 $\underline{9}$,19-diol as depicted in $\underline{2a}$.

© 1989 Pharmaceutical Society of Japan

The structure of 3a was also elucidated on the basis of spectroscopic data. The presence of a primary hydroxy group and a secondary hydroxy group in 3a was indicated by the H-NMR spectrum [3.61 (1H, d, J = 11.0 Hz), 4.23 (1H, d, J = 11.0 Hz), 3.80 (lH, m)], and was confirmed by acetylation giving the diacetate $3b^{6}$ [1H-NMR 4.13 (1H, d, J = 12.3 Hz), 4.46 (1H, d, J = 12.3 Hz), 4.87 (1H, m)]. The IR spectrum of 3b showed no absorption due to hydroxy group, indicating that one of the three oxygen atoms in 3a ($C_{28}^{H}_{46}O_{3}$) forms an ether linkage. The 1 H-NMR spectrum of 3a also showed signals of four methyls [0.72 (3H, s), 0.95 (3H, d, J = 6.5 Hz), 1.03 (6H, d, J = 6.5 Hz)] and a terminal methylene [4.69 (lH, s), 4.76 (lH, s)]. However the signal due to an epoxy proton [3.07 (1H, d, J = 2.0 Hz)] was newly observed in 3a instead of the signal due to the olefinic proton at C-6 present in $\underline{1}$ and $\underline{2a}$. This suggests that $\underline{3a}$ is the corresponding 5,6-epoxide of litosterol (2a). This was confirmed by comparison of the 13 C-NMR spectrum of $\underline{3a}$ with that of 2a as shown in Table I: the olefinic carbon signals at C-5 and C-6 shift to the higher field at § 63.6 (s) and 61.5 (d) ppm in 3a, respectively, and the other signals are very similar to each other. The eta-configuration of the epoxide was elucidated by comparison of the H-NMR spectrum of 3a with those of 5β , 6β -epoxycholesterol acetate and its 5α , 6α -isomer, which were prepared by oxidation of cholesterol acetate with m-chloroper-

Table I. 13 C-NMR Data (δ_{ppm} , 67.8 MHz, CDCl $_3$) of $\underline{1}$, $\underline{2a}$ and $\underline{3a}$

	3		
Carbon	<u>1</u> 7)	<u>2a</u>	<u>3a</u>
1	37.2	33.3	33.2
2	31.6	31.2	31.2
3	71.7	71.4	68.7
4	42.3	42.3	41.8
5	140.7	135.6	63.6
6	121.5	127.3	61.5
7	31.9	32.0	31.8
8	31.9	33.4	32.0
9	50.1	50.4	50.2
10	36.5	41.5	38.3
11	21.1	21.9	21.6
12	39.8	40.0	40.0
13	42.3	42.6	42.7
14	56.7	57.7	56.9
15	24.3	24.1	24.1
16	28.2	28.2	28.1
17	56.0	56.0	56.0
18	11.9	12.2	11.9
19	19.4	62.7	66.7
20	35.7	35.7	35.7
21	18.7	18.7	18.7
22	34.7	34.7	34.7
23	31.0	31.0	31.0
24	156.7	156.8	156.8
25	33.8	33.8	33.8
26	21.9	21.9	21.9
27	22.0	22.0	22.0
28	105.9	105.9	106.0

benzoic acid. The chemical shift and coupling constant of the epoxy proton in 3a were in good accordance with those of 5β , 6β -epoxycholesterol acetate [3.05 (1H, d, J = 2.0 Hz)] rather than those of the 5α , 6α -epoxide [2.87 (1H, d, J = 3.8 Hz)]. Thus the structure of 3a was assigned as 5β , 6β -epoxyergost-24(28)-ene-3 β , 19-diol.

The 19-hydroxylated sterols are very rare in nature, 10) and are of interest as a possible intermediate in the biosynthesis of 19-norsterols. 11)

ACKNOWLEDGEMENT We are grateful to Dr. S. Mizobuchi, Kirin Brewery Co. Ltd., for measurement of the antileukemic activity.

REFERENCES AND NOTES

- L. J. Goad, "Marine Natural Products," Vol. II, ed. by P. J. Scheuer, Academic Press, New York, pp 75-172 (1978). Recent examples: G. A. Doss and C. Djerassi, J. Am. Chem. Soc., <u>110</u>, 8124 (1988); R. Riccio, M. Santaniello, O. S. Greco and L. Minale, J. Chem. Soc. Perkin Trans. 1, <u>1989</u>, 823.
- Recent reports: K. Iguchi, S. Kaneta, K. Mori and Y. Yamada, Chem. Pharm. Bull., 35, 4375 (1987);
 K. Mori, K. Iguchi, N. Yamada, Y. Yamada and Y. Inouye, Chem. Pharm. Bull., 36, 2840 (1988).
- 3) U. H. M. Fagerlund and D. R. Idler, J. Org. Chem., 21, 372 (1956).
- 4) All new compounds gave satisfactory high-resolution mass measurements.
- 5) $\underline{2a}$; $[\alpha]_D$ -25.8° (c 0.24, CHCl₃). $\underline{2b}$; $[\alpha]_D$ -51.9° (c 0.32, CHCl₃). IR (CHCl₃) 1720, 1635, 890 cm⁻¹.
- 6) 3a; $[\alpha]_D + 3.8^\circ$ (c 0.26, CHCl₃). IR (CHCl₃) 3620, 3520, 1638, 890 cm⁻¹. 3b; $[\alpha]_D 13.4^\circ$ (c 0.7, CHCl₃). IR (CHCl₃) 1720, 1640, 890 cm⁻¹.
- 7) Assignments of the ¹³C signals were done by comparison with the data of cholesterol and campesterol; N. Koizumi, Y. Fujimoto, T. Takeshita and N. Ikekawa, Chem. Pharm. Bull., <u>27</u>, 38 (1979).
- 8) H. L. Holland, P. R. P. Diakow and G. J. Taylor, Can. J. Chem., <u>56</u>, 3121 (1978).
- 9) J. G. Phillips and V. D. Parker, "Steroid Reactions," ed. by C. Djerassi, Holden-Day, San Francisco, pp 593-657 (1963).
- M. Bortolotto, J. C. Braekman, D. Daloze, D. Losman and B. Tursch, Steroids, <u>28</u>, 461 (1976);
 S. P. Gunasekera and F. J. Schmitz, J. Org. Chem., <u>48</u>, 885 (1983).
- 11) S. Popov, R. M. K. Carlson, A.-M. Wegman and C. Djerassi, Tetrahedron Lett., 1976, 3491.

(Received July 3, 1989)