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NEURAL NETWORKS APPLIED TO PHARMACEUTICAL PROBLEMS. I. METHOD AND APPLICATION TO DECISION MAKING
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Neural networks, which are also called perceptrons or multi-layer networks, were
found to be useful tools in decision making. The model study showed that the predic-
tions by the neural network were better than those by the linear learning machine and

cluster analysis.
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Recently data-processing methods called parallel-distributed processing (PDP) have been applied in various
fields.l) The characteristics of PDP have been found to be suitable for the data processing in which the
relationship between the cause and its results cannot be exactly defined. One of the typical PDP's is the neural
network which is a computer-based system derived from a simplified concept of the brain in which a number of
nodes, called processing elements or neurons, are interconnected in a netlike structure. The characteristics of
PDP's operation strongly suggest their applications to the data processing in biology-related responses and
reactions such as diagnosis based on clinical data and creation of new drugs based on the structure-activity
relationship. Our first report deals here with the general theory of the neural network used in our series of
studies and an example in decision making as a model study for the application to clinical diagnosis. This may
be the first example of application of the neural network to pharmaceutical problems and the results show that
the neural network is promising in this and related fields.

Shown in Fig. 1 is the neural network: the circles are neurons which are actually variables taking values
ranging from O to 1. The weights interconnecting neurons can take either positive or negative values. The number
of the layers is arbitrary and generally consists of n layers. The data are input to A and are output from B.

The value of a neuron (Oj) at the nth layer can be expressed by Eq. 1,

Oj =1/[1 + EXP(-(ij)] = f(Yj), Yj = (Z Wijxi - Gj €))

where x; is one of the values of the neurons at the n-1 layer; Wy an element of the weight matrix, expresses

i j*
the weight value between neurons, i and j; ej is a characteristic value for neuron j;o is a parameter which
expresses the non-linearity of the neuron. When the values of the neurons of each layer are renewed by feeding
data into A, the all values expressed by Eq. 1 are synchronously changed.

Given N neurons at the first layer. A set of the input data can be expressed by a vector with N elements
for N neurons which is, here, called an "input pattern." Likewise, the output data can also be regarded as a
vector and be called an "output pattern." The vector which is compared with an output pattern to obtain the

fixed W;; is called a "training pattern” (tj). The training is carried out according to the following equations.

]
Wig=-dyxje  (2) dj=(05-tE(yy) (3a), dj = (W d"DE'GY) (3b)

Here, ¢ is a parameter which determines the shift for correction in recursive cycles. Equation 3a is used only

for the correction of the last (output) layer and 3b for other layers where w'jl and d'l at the nth layer are

wij and dj at the n+l layer, respectively. The function f' in Eq. 3 is,
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£'(y5) = £(y 5[ - £(yy)]a (4)
where both € and o can be set to be independent of the layer. The recursive iteration is carried out until E,
E=2(0; - t)2 (5)
J J

becomes small enough (typically less than 0.01). Even when that M sets of the input and training patterns are
given, all of the output patterns can possibly be made close enough to the training patterns by the iteration
through Egs. 1 and 2. Then the neural network can classify the input patterns into M groups.

As a model study, we adopted the well-studied data and compared the ability of the neural network with
coventional methods.z) We used a three-layer network. Its structure and parameters are shown in Table I. Shown
in Table II are the endo/exo conformations and the relative 13C_NMR chemical shifts in the derivatives of
norbornene.3) The compound numbers are the same as those in the literature. In accordance with the former

studies,z) we used 25 (No. 1 to 25) out of 38 data as training data. First, in order to obtain wij’ the training
patterns were fed recursively until each wij settled down. Then, the network was used to answer new problems, i.
e., the remaining 13 samples were fed to the network to see what answer the network gave. Each neuron was set to
have a value ranging from ca. O to 1; the data of 13C_NMR chemical shifts were, therefore, rescaled to the

region between ca. 0.1 and 1.0 by the following equation,

+ 0.1)/(x - x_: + 0.1) (6)

X3 = (x5 - x max min

i min

where Xmin and Xna

a situation where x; being 0, W;

¢ are the minimun and maximum data. The reason not to give O as the least value is to avoid
j may remain unchanged. The endo and exo conformations were expressed by the
vectors (0,1,1,0) and (1,0,0,1), respectively, where instead of Zelement vectors, we used 4&element vectors
simply to check whether or not the network operates appropriately. Although the neurons at the first layer may
take continuous values between O and 1, those of the last layer are required to take discrete values 0 or 1.
For this requirement, o was forced to change in the second and third layers. The parameter 6 was set to be
zero as is typically so and € was so determined as to give a good convergence in the iteration.

The upper part of Table II shows input data (unscaled) and the output patterns for 25 compounds which fixed

W The number of iterations was 60. The final output patterns do not show completely discrete values, which

ije
shows the limit of the resolution ability of the network. The lower part of the table shows the answers (endo or
exo) obtained by the network for the untrained 13 compounds. The elements of the output patterns for untrained
samples deviate considerably from O or 1 because the weight matrix was not determined for them, and it may be

seen that the more the input data depart from the training patterns, the more the output data deviate from the

\ Table I. Structure and Parameters of the Network

Neurons o € ©

Layer 1 7
, Layer 2 14 1.5 0.2 0.0
' Layer 3 4 3.0 0.2 0.0

e tet

N /

Fig. 1. n-Layer Neural Networks
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Table II. Relative 13C-NMR Chemical Shifts and Output Patterns by the Neural Network

No. endo/exo C; Cy Cs Cy Cs Ce Cy Qutput pattern Decision
1 exo 6.7 6.7 10.1 0.5 0.2 -1.1 -3.7 0.97 0.02 0.02 0.97
2 exo 8.9 25.3 12.4 -0.4 -1.2 -3.1 4.4 1.00 0.00 0.00 1.00
3 exo 7.7 44.3 12.3 -1.0 -1.3 -5.2 -4.4 1.00 0.00 0.00 1.00
4 exo 4.6 16.7 4,4 -0.2 -0.3 -1.0 ~-1.8 0,94 0.06 0.06 0.9
5 exo 1.8 15.1 4.4 -0.2 0.2 -0.7 =3.3 0,99 0.01 0.01 0.9
6 exo 5.7 3.0 2.6 -0.5 -0.4 0.7 -=3.5 0,99 0.01 0.01 0.94
7 exo 6.1 5.9 10.6 0.6 0.2 0.2 -3.7 099 0.01 0.01 0.9
8 exo 6.5 6.3 10.4 0.3 -0.8 -0.1 -3.5 099 0.01 0.01 0.99
9 exo 6.5 7.5 9.5 0.5 1.7 0.7 -3.8 0.97 0.03 0.03 0.97
10 exo 7.8 47.0 11.7 -1.3 3.9 =-2.7 -3.2 0.99 0.01 0.01 0.99
11 exo 6.9 6.4 10.1 0.7 -1.2 0.1 -39 1,00 0.00 0.00 1.00
12 exo 5.6 4.9 7.0 0.2 -1.1 0.2 -39 1,00 0.00 0.00 1,00
13 exo 2,5 42.5 11.9 -0.8 -1.1 -2.4 1.4 095 0.05 0,05 0.95
14 endo 5.4 4.5 10.6 1.4 0.5 -7.7 0.2 0,00 1,00 1.00 0.00
15 endo 6.8 23.3 10.5 1.2 0.6 ~9.5 0.3 0.00 1.00 1.00 0.00
16 endo 6.3 42,4 9.5 0.9 0.2 -9.7 -0.9 0.03 0.96 0.96 0.03
17 endo 4,2 16.2 2.1 0.9 -0.6 -4.8 1.9 0,00 1.00 1.00 0.00
18 endo 1.7 12.8 4.0 0.4 0.2 -7.2 1.4 0.00 1.00 1.00 0.00
19 endo 4.7 3.1 2.2 0.3 1.3 -6.5 -0.6 0.00 1.00 1.00 0.00
20 endo 4.7 5.3 9.2 1.3 -0.4 -6.5 1.4 0.00 1,00 1.00 0.00
21 endo 4.6 11.5 8.9 -0.1 0.8 0.4 1.8 0.08 0.93 0.93 0.08
22 endo 5.6 7.5 8.7 1.4 1.7 -3.0 1.7 0.00 1.00 1.00 0.00
23 endo 7.1 47.8 13.3 2.2 3.6 -3.4 0.3 001 0.99 0.99 0.01
24 endo 4,1 4,2 7.0 0.7 0.5 -7.4 0.0 0.00 1.00 1.00 0.00
25 endo 3.2 40.2 10.4 -0.5 0.0 -10.3 3.1 0.00 1.00 1.00 0.00
26 exo 5.5 1.0 6.3 -0.3 ~1.5 ~-1.6 -1.3 083 0.18 0.18 0.83 exo
27 endo 3.4 0.1 5.5 0.2 -0.7 -4.9 0.0 0.02 0,98 0,98 0.02 endo
28 exo 5.1 16.4 4,2 -0.4 -1.1 -1.4 =21 098 0.02 0,02 0.98 exo
29 endo 4.0 15.9 2.2 0.7 ~-0.7 -5.0 1.7 0.00 1.00 1,00 0.00 endo
30 exo 6.6 7.0 10.1 0.2 -1.2 0.5 =3.7 1.00 0.00 0.00 1.00 exo
31 endo 6.0 8.4 11.2 -0.1 0.7 -1.5 -1.6 0.74 0.24 0.24 0,74 exo
32 exo 6.3 7.2 9.8 0.7 -0.1 0.8 -3.5 0,99 0.01 0.01 0.99 exo
33 endo 5.1 4.8 8.4 . 1.1 -0.1 -7.3 1.6 0.00 1.00 1,00 0.00 endo
34 exo 1.9 17.1 5.2 -0.1 0.9 0.9 -3.4 099 0.01 0,01 0.99 exo
35 endo 2.3 18.3 5.0 0.3 1.3 -2.9 1.4 0.01 0.99 0.99 0.01 endo
36 endo 5.1 4.0 8.4 1.1 0.2 -7.7 1.6 0.00 1.00 1.00 0.00 endo
37 exo 2.9 30.3 13.4 -0.5 -2.1 -0.7 2.0 0.94 0.06 0.06 0.94 exo
38 endo 3.7 29.8 10.8 -1.6 -1.1 -9.0 2.2 0.04 0.96 0.96 0.04 endo

typical output patterns. However, all output patterns are close to (1,0,0,1) or (0,1,1,0) and are apparently
different from meaningless (0,1,0,1), etc. The network decisions are shown in the last column of the table and
the rate for the correct answer was 12/13 = 0.923, which is better than the previous methods by the linear
learning machine and the cluster analysis (both 11/13 = 0.846).

Quick and correct decision making based on ambiguous data is always required in clinical fields. As
our model study shows, if wij for a series of symptons and clinical data in a specified disease is established,

a quick diagnosis may be obtained using a small computer such as a personal computer.
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