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MICROBIOLOGICAL ASYMMETRIC INDUCTION OF 4,9-DIMETHYL-3,5-DIOX0-A* *® -OCTALINY
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Microbiological asymmetric induction of 4,9-dimethyl-3,5-dioxo-A* ® -octalin, ()-1 was
accomplished with various yeasts. With properly selected microorganisms, (+)-4, (95)-
dimethyl-(5S)-hydroxy- (2) and (-)-4, (9R)-dimethyl-(58)-hydroxy-3-oxo-A* % -octalin (3),
(-)-4, (9R)-dimethyl-(3S)-hydroxy- (6) and (+)-4, (98)-dimethyl-(35)-hydroxy-5-oxo-A* % -
octalin (7) were obtained with high optical purity.
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The use of biological systems (enzymes or microorganisms) to prepare chiral alcohols is widespread and
very efficient. There are numerous examples?’ of biological reduction of acyclic ketones, but only a few
reports® of bicyclic ketone reduction using microorganisms such as yeasts. Earlier we reported® ® the
reduction of bicyclic ketones by microorganisms (yeasts). These optically active bicyclic compounds were
useful for the syntheses of the optically active natural products.*® ®® The reduction of 4-methoxycarbonyl-
9-methyl-3, 8-dioxo-A* !9 -octalin afforded the optically pure (+)-4-methoxycarbonyl-(8S)-hydroxy-9-methyl-
3-0x0-A* 19 —octalin by the specialized yeasts.*’ 1In this case, the unsaturated ketone with an a-ester
group was inert, but only the saturated one was reduced in moderate yield. The additional (-)-diketone was
obtained in high optical purity by repeated reductions. Both the normal-type ketol and the ent-type diketone
were close-up to be key intermediates for the syntheses of sesquiterpenoids and diterpenoids. The saturated
ketone of 4,9-dimethyl-3, 7-dioxo-A* *® -octalin was reduced to afford the normal-type and ent-type synthons
using selected yeast each.® On the other hand, the use of a specified lipase for asymmetric hydrolysis is
a convenient method, since the reaction is brief and gives a relatively large amount of product with high
optical purity. Then asymmetric hydrolysis of only the above acetate afforded the optically pure trans-
4,(98)—dimethyl—(7S)—hydroxy*3—oxo—Z&4“°’—octalin among other hydrolysates of low optical purity.® In the
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Fig. 1., Stereoview of (-)-p-Bromobenzoate (10) of (-)-4, (9R)-Dimethyl-(5S5)-hydroxy-3-oxo-A* '® —octalin (3)

hydrolysis of a simpler monocyclic acetate, only one yielded the pure optical product.®

Initially, we examined the asymmetric hydrolysis of the trans-5- (1)-4” and cis-5-acetoxyl-4,9-
dimethyl-3-oxo-A* *® —octalin, (1)-5" with seventeen kinds of commercially available lipases but recovered
only the starting material. There are the steric interference between the C(4)-methyl and the C(5)-acetoxyl
in (1)-4 and the 1, 3-diaxial interaction between the angular methyl and the C(5)-acetoxyl in (1)-5. After the
screening of various microorganisms, the reduction of diketone (1)-1”’ with Rhodotorula rubla produced the
four possible ketols (A+B+C+D), which were sensitive to air to afford the diketone. The corresponding four
ketol acetates (E+F+G+H) were subjected to a silica gel chromatography to be separated into the less polar
fraction yielding E, the more polar fraction containing (F+G+H) and the (+)-diketone (27% yield), [« ]3*
+84.0° (¢ = 2.5, CHCla). The acetate (E) and the acetate mixture (F+G+H) were treated with potassium
carbonate to afford the optically active ketol (A) (7.5% yield), [a]3°® +126.7° (c = 8.0, CHCls), and a
mixture of the ketols (B+C+D), respectively. The ketols were successively separated by repeated chromato-
graphy into the ketol (B), [a ]2 -43.5° (c = 1.7, CHCls), the ketol (C), [a]3” -156.4° (¢ = 2.2, CHCl;) and
the ketol (D), [« }13° +88.1° (c = 2.6, CHClas) in 24%, 5.4% and 9.4% yield, respectively. The absolute
configuration of the main product (B) was determined by X-ray analysis of its p-bromobenzoate (-)-10 to be
55,9R [hence B = (-)-3] (Fig. 1).® The ketol (A) was oxidized with Jones reagent to provide the diketone
(I), [a]&” +166.8° (c = 3.0, CHCl;), which was identical except for the sign of the rotation with (9R)-
diketone (-)-1 (J), [ ]8° -168.4" (¢ = 2.5, CHCls) obtained by Jones oxidation of the foregoing ketol (B).
Since the sign of [@]p in I was opposite to that in (-)-1, the absolute configuration of I and the above
recovered diketone was found to be 9S [hence I = (+)-1], respectively. The stereochemistry of C(5)-OH in A
was found to be equatorial because the C(5)-OH of (-)-3 (B) was equally as axial as in (-)-10. Therefore, the
absolute configuration of A was determined to be 55,98 [henceA = (+)-2)]. Ketol (C) and (D) were oxidized to
provide the corresponding diketone (J), [a 8% -169.0° (¢ = 1.1, CHCls) and (I), [a]8% +153.6° (c = 1.4,
CHCls), respectively, and the absolute configuration of their angular methyl groups were determined by the
same way as for the ketol (A). The stereochemistry of C(3)-H in C was found to be equatorial because this
'H-NMR signal appeared at & 4.00 (dd, J = 2.6, 2.9 Hz). Thus the absolute configuration of C was determined
to be 3S5,9R [hence C = (~)-6]. The stereochemistry of C(3)-H in D was found to be axial because the 'H-NMR
signal due to C(3)-H appeared in & 4.07 (dd, J = 5.5, 8.4 Hz). Therefore, the absolute configuration of D
was determined to be 3S,9S [hence D = (+)-T7].

In order to determine the optical purity of the reduction products, the racemic trans-5-hydroxy-3-ketone
($)-2% and cis-5-hydroxy-3-ketone ($)-3°’ were treated with (+)- a-methoxy- o -trifluoromethylphenylacetic
acid chloride [(+)-MTPAC1]'® to give the corresponding (+)-MTPA esters (1)-11 and (#)-12, respectively. The
two NMR signals due to the C(4)-methyl at & 1.75 and & 1.65 for 11 and those due to each angular methyl
group at & 0.96 and & 1.10 for 12 appeared in different fields. The racemic cis-3-hydroxy-5-ketone (1)-7
gave the (+)-MTPA ester 14 as usual. The NMR signal due to the angular methyl appeared in distinctly
different fields at & 0.99 and & 1.03 for 14. The first ketol (55,95)-(+)-2 (A) was converted to the
corresponding (+)-MTPA ester (1)-11 (& 1.65), which was found to be 97% ee by taking account of the small
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Table I. Microbiological Reduction of 4,9-Dimethyl-3,5-dioxo-A* % -octalin, (1)-1

Entry Yeast Product Recovery

(+)-2 (71.5%, 97% ee) (-)-§ (5.4%, 91% ee)
1 Rhodotorula rubla (+)-1 (27%, 50% ee*)
(-)-3 (24%, >99% ee) (+)-7 (9.7%, 96% ee) -

(+)-2 (1.6%, 94% ee) (-)-6 (8.5%, 86% ee)
2 Kloeckera saturnus (-)-1 (34.4%, 8% ee™)
(-)-3 (15%, 95% ee)  (+)-7 (16.3%, 95% ee)

*) calculation based on [a]p

signal (& 1.75) due to its enantiomer (-)-11. The second ketol (53,9R)-(-)-3 (B) was converted to the
corresponding (+)-MTPA ester (-)-12 (& 0.96), whose optical purity was found to be more than 99% ee.

Although the racemic sample of the third ketol ()-8 was not obtained, the optical purity of the (+)-MTPA
ester of the microbial reduction product (3S,9R)-(-)-6 (C) (& 0.97 for C(9)-methyl) was found to be 91% ee by
taking account of the small signal for the C(9)-methyl due to its enantiomer (3R, 98)-(+)-13. The optical
purity of the fourth ketol (3S,9S) (+)-7 (D) was found to be 96% ee [(+)-MTPA ester (-)-14 (& 1.03) and its

enantiomer (+)-14 (& 0.99)], as usual.

Thus the relationship between the absolute configuration and the chemical shift was established, and the
result of the asymmetric reduction of diketone (t)-1, using the specified yeast, is shown in Table I.

In conclusion, with the properly selected microorganism, the asymmetric reduction of 4, 9-dimethyl-3,5-
dioxo-A* % -octalin (4)-1 afforded the four optically pure ketols in both cases. The ent-type (9R)-ketol
(-)-3 was obtained as the main product in reasonable yield by reduction of Rhodotorura rubla, and another
nomal-type (95)-ketol (+)-Z was acquired in a good yield by reduction of Kloeckera saturnus. Since the two
racemic sesquiterpenoids, tuberiferine'® and temsin,'® have been synthesized via (#)-1, the synthesis of the
optically active compound, i.e. (+)-4,(9S)-dimethyl-(3S)-hydroxy-5-oxo-A* *® —octalin (7), constitutes the
formal total syntheses of the two optically active sesquiterpenoids starting from the nomal-type chiral
synthon. The ent-type chiral key intermediate (-)-3 will be available for the syntheses of various optically
active natural products, such as (-)-frullanolide!® and (+)-cis- B -cyclocostunolide. '*’
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