SYNTHESIS OF GIBBERELLIN A_1 , A_5 , A_{55} AND A_{60} . METAL-AMMONIA REDUCTION OF GIBBERELLIC ACID AND ITS DERIVATIVE

Masanao SHIMANO, Hiroto NAGAOKA, and Yasuji YAMADA*

Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan

Treatment of gibberellic acid (1) and 13-O-methoxymethylgibberellic acid (2) with lithium disopropylamide (LDA), and then with Li in liquid ammonia gave 3-hydroxy diacid 4 and 5, respectively. From the diacid 5, gibberellin A₅₅ (10) and gibberellin A₁ (12) were synthesized. Without LDA treatment prior to Li-liquid ammonia reduction, 1 gave diacid 8 from which gibberellin A₆₀ (14) and gibberellin A₅ (17) were synthesized. KEYWORDS gibberellic acid; Li-liquid ammonia reduction; C₁₉ gibberellin; gibberellin A₅; gibberellin A₅₅; gibberellin A₆₀; synthesis

There have been a number of attempts to synthesize gibberellin phytohormones because of their biological importance and their structural interest.¹⁾ Recently, we have accomplished the total synthesis of (\pm) -gibberellic acid (gibberellin A₃, GA₃), (\pm) -1.²⁾ 3-Hydroxy diacid 5 and diacid 8, whose racemates were the synthetic intermediate in our GA₃ synthesis, will be useful synthetic precursors for various C₁₉ gibberellins having a 13-hydroxy group. Here we wish to report on an effective method for converting natural GA₃ (1) into the diacid 5 and 8, and an efficient synthesis of GA₁ (12), GA₅₅ (10), GA₆₀ (14) and GA₅ (17) from these diacids.

For the selective hydrogenolysis of the allylic C-O bond at the C₁₀ position and the migration of the C_{1,2} double bond in 1 leading to 4, the metal-liquid ammonia reduction of 1 was carefully investigated. Direct treatment of 1 with lithium in a mixture of liquid ammonia and ethanol (8:1) at -78°C caused C-O bond fissions at both allylic positions (C₃ and C₁₀) to give diacid 8, $[\alpha]_D^{25}$ +42.3° (c=0.98, EtOH), as a single product in 93% yield (Chart 1). The unusual reaction³⁾ probably proceeds via the diene 7 which can be formed by the initial hydrogenolysis of the C-O bond at the C₁₀ position in 1 leading to the carbanion 6 followed by dehydroxylation. The dehydroxylation at the C3 position was prevented by a devised reduction procedure, which involved (1) treatment of 1 with lithium diisopropylamide (LDA) prior to the reduction, and (2) metal-ammonia reduction of the resultant lithium alkoxide 3. Solution of 1 in THF was treated with 3 equiv of LDA at -78°C for 20 min, diluted 6-fold with as much liquid ammonia as THF, then lithium metal was added to the mixture portionwise at -78°C until all of 1 reacted to afford the 3-hydroxy diacid 4, $\alpha_{D}^{25} + 155.7^{\circ}$ (c=0.40, EtOH), in 95% yield. Diacid 5, $\alpha_{D}^{25} + 89.1^{\circ}$ (c=0.22, synthesized similarly in 96% yield from 13-O-methoxymethyl-GA₃ (2),⁵⁾ which was prepared from 1 in 85% overall yield by a five step sequence: (1) selective methoxymethylation of the carboxyl groups with chloromethylmethyl ether in the presence of triethylamine; (2) acetylation of the secondary hydroxyl group at C₃ with acetic anhydride and pyridine; (3) methoxymethylation of the tertiary hydroxyl group at C₁₃ with chloromethylmethyl ether and diisopropylethylamine; (4) hydrolysis of the acetate with potassium carbonate in methanol; (5) hydrolysis of methoxymethyl ester with water and pyridine.

From the diacid 5, GA_{55} (10) and GA_1 (12) were effectively synthesized by the following sequential reactions. Methoxymethylation of the carboxyl groups in 5 with an excess amount of chloromethylmethyl ether and triethylamine followed by careful treatment with MCPBA in methylenechloride at -15°C gave epoxide 9, $[\alpha]_D^{25}$ +101.5° (c=0.26, EtOH), which was treated with 80% acetic acid at 65°C to afford GA_{55}

Reagents: (A) 1) MeOCH₂Cl (1.2 eq), Et₃N (1.5 eq), CH₂Cl₂, 25°C, 6 h; 2) Ac₂O-pyridine-CH₂Cl₂ (6:7:20), 25°C, 12 h; 3) MeOCH₂Cl (3 eq), i-Pr₂NEt (4 eq), CH₂ClCH₂Cl, 60°C, 3 h; 4) K₂CO₃, MeOH, -10°C, 30 min; 5) H₂O-THF-pyridine (40:24:1), 80°C, 20 h; (B) LDA (3 eq), THF then Li, liq NH₃-THF (6:1), -78°C; (C) 1) MeOCH₂Cl, Et₃N, CH₂Cl₂, 25°C, 80 min; 2) MCPBA, CH₂Cl₂, -15°C, 4.5 h; (D) AcOH-H₂O (4:1), 65°C, 30 h; (E) I₂, 5% NaHCO₃-THF (1:1), 0°C, 30 min; (F) 1) NaBH₄, DMSO, 75°C, 2 h; 2) AcOH-H₂O (4:1), 60°C, 35 h; (G) Li liq NH₃-EtOH (8:1), (H) MeOCH₂Cl, i-Pr₂NEt, CH₂ClCH₂Cl, 60°C, 3 h; (I) MCPBA, CH₂Cl₂, -25°C to -15°C, 5 h; 2) AcOH-H₂O (4:1), 65°C, 40 h; (J) DBU, THF, 65°C, 4 h; (K) [Rh(Ph₃P)₃]Cl, EtOH, 95°C to 100°C, 4 h.

Chart 1

(10), $^{6)}$ [α] $_{D}^{25}$ +18.3° (c=0.48, EtOH), in 81% overall yield. Direct lactonization of 4 and 5 with peracid to form GA_{55} (10) $^{7)}$ and 13-O-methoxymethyl- GA_{55} , respectively, gave an unsatisfactory result. Iodolactonization of 5 with iodine in a mixture of 5% aqueous sodium bicarbonate and THF (1:1) at 0°C gave 11 in 95% and reduction of 11 with an excess amount of sodium borohydride in DMSO at 75°C followed by hydrolysis of methoxymethyl ether with 80% acetic acid at 60°C gave GA_1 (12), $[\alpha]_{D}^{25}$ +36.3° (c=0.10, EtOH) (lit., $[\alpha]_{D}^{25}$ +35° (c=1.02, EtOH)) $^{8)}$. (74%, over two steps).

 $GA_{60}^{9)}$ (3-dehydroxy- GA_{55} , 14), $[\alpha]_D^{25}$ +7.03° (c=0.73, EtOH), was synthesized from the diacid 8 via dimethoxymethyl ester 13, $[\alpha]_D^{25}$ +86.1° (c=0.55, EtOH), similar to the way 10 was synthesized. And GA_5 (17), $[\alpha]_D^{25}$ -77.2° (c=0.22, EtOH) (lit., $[\alpha]_D^{25}$ -77° (c=0.5, EtOH))⁸⁾ was also synthesized from 8 by a three step sequence: (1) iodolactonization to form 15; (2) dehydroiodination of 15 with DBU in THF at 65°C to give olefin 16, $[\alpha]_D^{25}$ +37.6° (c=0.75, EtOH), in 96% yield from 8; (3) isomerization of the $C_{1,2}$ double bond with tris(triphenylphosphine)rhodium(I) chloride in ethanol at 95°C to 100°C for 4 h in 85% yield.

ACKNOWLEDGEMENT We gratefully acknowledge a generous gift of gibberellic acid from Kyowa Hakko Kogyo Co. Ltd.

REFERENCES AND NOTES

- 1) For reviews, see: E. Fujita and M. Node, Heterocycles, 7, 709 (1977); L. N. Mander, Acc. Chem. Res., 16, 48 (1983); L. N. Mander, Nat. Prod. Rep., 5, 541 (1989).
- 2) H. Nagaoka, M. Shimano, and Y. Yamada, Tetrahedron Lett., 30, 971 (1989).
- 3) Removal of the inactivated hydroxyl group at C₃ in 1 was an unexpected result, while the C-O bond fission at C-3 was reported in the reduction of 3,13-O,O-dimethoxymethyl GA₃, in which the hydroxyl group was activated by ether formation. R. D. Dawe, L. N. Mander, and J. V. Turner, *Tetrahedron Lett.*, 26, 363 (1985).
- 4) Catalytic hydrogenation of GA₃ gave diacid 4 and 12. N. Murofushi, R. C. Durley, and R. P. Pharis, Agric. Biol. Chem., 38, 475 (1974).
- 5) All new compounds were fully characterized by ¹H-NMR (400 MHz), IR, and mass spectra.
- 6) P. Gaskin, P. S. Kirkwood, J. R. Lonton, J. MacMillan, and M. E. Radley, Agric. Biol. Chem., 44, 1589 (1980).
- 7) N. Murofushi, M. Sugimoto, K. Itoh, and N. Takahashi, Agric. Biol. Chem., 43, 2179 (1979).
- 8) J. MacMillan, J. C. Seaton, and P. J. Suter, Tetrahedron, 11, 60 (1960).
- 9) P. S. Kirkwood and J. MacMillan, J. Chem. Soc., Perkin Trans. 1, 1982, 689.

(Received November 2, 1989)