A NEW TOXIC NEOANISATIN DERIVATIVE FROM THE PERICARPS OF ILLICIUM MAJUS

Chun-Shu YANG,^a Miwa HASHIMOTO,^b Naosuke BABA,^b Masakatsu TAKAHASHI,^b Hiroshi KANETO,^b Nobusuke KAWANO,^b and Isao KOUNO*,^b

Beijing College of Chinese Traditional Medicine,^a Beijing, People's Republic of China and Faculty of Pharmaceutical Sciences, Nagasaki University,^b Nagasaki 852, Japan

A new toxic neoanisatin-derivative (1) was isolated from the pericarps of *Illicium majus*. The structure of this compound was elucidated by spectroscopic data, including the 2D COSY NMR technique. The toxicity of compound 1 is also described.

KEYWORDS Illicium majus; 6-deoxyneoanisatin; neoanisatin; convulsant; 2D COSY NMR

Anisatin and neoanisatin, isolated from the fruits of *Illicium anisatum* L.(Illiciaceae), are well known for their convulsive toxicity and their divergent chemical structures. Only these two compounds have been known for nearly two decades as toxic sesquiterpenes obtained from *I. anisatum* (Japanese star anise).^{1,2)} A number of anisatin-like compounds, majucin, neomajucin was also isolated by us from the Chinese *Illicium* plant, *I. majus* HOOK. f. & THOMS, but only neomajucin was revealed to be toxic.³⁾

Further investigation on the constituents of the pericarps of *I. majus* has resulted in the isolation of a new sesquiterpene lactone (1), which is the first example of another toxic neoanisatin-derivative.

The MeOH extract of *I. majus* (1.5 kg) was treated by the previously reported method.³⁾ Fraction II obtained from counter-current distribution of this extract was chromatographed on silica gel using the solvent of CHCl₃-MeOH (97:3), and purified by a Kusano prepacked column Si-5 (*n*-hexane-AcOEt=1:1). Subsequent recrystallization from CHCl₃-AcOEt yielded compound 1 (132 mg).

Compound 1, mp 211-213°C (from CHCl₃-AcOEt); $[\alpha]_D$ +67.4°(c=0.23) gave the molecular formula, $C_{15}H_{18}O_7$, by elemental analysis and the mass spectrum (m/z: 310). The IR spectrum of 1 demonstrated that the absorptions due to hydroxyl groups at 3480 and 3460 cm⁻¹, and a δ -lactone carbonyl group at 1730 cm⁻¹, along with characteristic absorptions due to a β -lactone carbonyl group at 1825 cm⁻¹ and a cyclopentanone carbonyl group at 1745 cm⁻¹. The presence of a β -lactone group was supported by the signals of AB quartet at δ 4.59 and 4.90 (each a doublet) with a small coupling constant (J=6.6Hz) in the 1 H-NMR spectrum (in d₅-pyridine) of 1, which also suggested the presence of two secondary methyl groups in CD₃OD solution as two doublet signals at δ H1.05 (3H,d, J=7.0Hz) and δ H1.22(3H,d,J=7.3Hz), and in d₅-pyridine solution as one doublet signal at δ H1.32(6H,d,J=7.3Hz). The signals in the 13 C-NMR spectrum of 1 resembled those of anisatin⁴⁾ aside from the signals due to C-2, C-3 and C-6. In the 1 H- 1 H 2D COSY of 1,

Table I. ¹H-(400MHz) and ¹³C-(100MHz)NMR Data of Compound 1 in d₅-Pyridine (δ from TMS)

Position	¹ H	¹³ C	
1	3.20(q <i>,J</i> =7.3)	48.8	
2	_	214.5	
3α	2.85(d,J=17.6)		
3β	3.63(d,J=17.6)	46.2	
4	_	<i>7</i> 7.6	
5		66.4	
6	3.33(dq,J=2.0,7.3)	35.2	
7	4.56(ddd,J=4.0,2.2,	2.0) 78.9	
8α	2.74(dd,J=13.9,2.2)		
8β	2.14(dd,J=13.9,4.0)	31.2	
9	_	50.5	
10	4.53(s)	69.8	
11		174.6	
12	1.32(d, <i>J</i> =7.3)	12.8	
13	 '	171.5	
14α	4.59(d,J=6.6)		
14β	4.90(d,J=6.6)	64.1	
15	1.32(d, <i>J</i> =7.3)	8.0	

Table II. Dose Dependence Mortality
Induced by Compound 1

Dose	Mortality	
1.000	1/10	
1.250	3/10	
1.500	7/10	
2.000	8/10	
4.000	10/10	

LD₅₀=1.464 mg/kg by Probit method.

the connectivities were clarified between H_3 -15-H-1, H_2 -3 α , β , and H-6-H-7- H_2 -8 α , β , respectively. These findings suggested that 1 is a 2-oxo-6-dehydroxy neoanisatin-derivative. The configuration at C-1 was confirmed as 15 β -methyl by NOE experiment, which showed enhancement between the signals due to H_3 -15 and H-10 (7%), whereas an NOE was observed between the H_3 -12 signal and one of the H_2 -14 signals(δ_H 4.59) (3%). These observations demonstrated that 1 has the same configuration as that of neoanisatin, thus the structure of 1 was determined to be 2-oxo-6-dehydroxyneoanisatin.

The toxic effect of compound 1 was examined using ddY-strain mice weighing 25-28g, with 10 animals in each dose group. When the mice were treated with this compound, the animals exhibited picrotoxin-like convulsion, in a dose-dependent manner, which is shown in Table II. The toxicity of this compound (1.46 mg/kg) is less than that of anisatin or neoanisatin(1.0 mg/kg), but nearly equivalent to that of picrotoxin.

REFERENCES

- 1) J.F.Lane, W.T.Koch, N.S.Leeds, and G.Gorin, J.Am.Chem.Soc., 74, 3211 (1952).
- 2) K.Yamada, S.Takada, S.Nakamura, and Y.Hirata, Tetrahedron, 24, 199 (1968).
- 3) I. Kouno, N. Baba, M. Hashimoto, N. Kawano, M. Takahashi, H. Kaneto, C.-S. Yang, and S. Sato, *Chem, Pharm. Bull.*, 37, 2448 (1989); and references cited therein.
- 4) S. Manabe, K. Wakamatsu, Y. Hirata, and K. Yamada, Tetrahedron, 35, 1925 (1979).

(Received November 22, 1989)